La huella de carbono equivalente de algunos platos típicos colombianos

Contenido principal del artículo

Alexander Salazar-Ceballos
https://orcid.org/0000-0002-0708-8792
Lidice Alvarez-Miño
https://orcid.org/0000-0002-1414-9442

Resumen

Una dieta saludable y sostenible es aquella que reduce el impacto sobre el medio ambiente, a su vez, promueve la salud. Desde la salud pública la obesidad, diabetes, hipertensión y enfermedades coronarias conocidas como enfermedades no transmisibles (ENT) relacionadas con la dieta, y la adopción de una dieta saludable y sostenible puede contribuir a su prevención. Se realizó un estudio que tuvo como objetivo describir el impacto ambiental de varios platos típicos de las diferentes regiones geográficas de Colombia considerando su receta original inicialmente y luego eliminando las carnes rojas y carnes procesadas. El estudio calculó el total de CO2-eq/kg del plato típico a partir de la base de datos de Food Impacts on the Environment for Linking to Diets que permite conocer el CO2-eq/kg de cada alimento. Los resultados mostraron que el plato típico que presentó el mayor impacto ambiental fue el friche de chivo con 21,719 CO2-eq/kg. Al eliminar las carnes rojas y las carnes procesadas de los platos típicos, se obtuvieron valores menores de 1 CO2-eq/kg, excepto la bandeja paisa que tuvo un valor final de 2,035 CO2-eq/kg. Se concluye que adoptar una dieta saludable y sostenible disminuiría la mortalidad por enfermedades no transmisibles.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Salazar-Ceballos, A., & Alvarez-Miño, L. (2022). La huella de carbono equivalente de algunos platos típicos colombianos. Duazary, 19(2), 95–105. https://doi.org/10.21676/2389783X.4688
Sección
Artículo de investigación científica y tecnológica

Citas

Food and agricultura organization and World Health Organization (FAO WHO). Sustainable healthy diets - Guiding principles. Sustainable healthy diets. 2019. [cited 2021 Jul 29]. Disponible en http://www.fao.org/3/ca6640en/ca6640en.pdf

Singh A, Bassi S, Nazar GP, Saluja K, Park M, Kinra S, et al. Impact of school policies on non-communicable disease risk factors – a systematic review. BMC Public Health [Internet]. 2017;17(1).Doi: http://dx.doi.org/10.1186/s12889-017-4201-3

Lane MM, Davis JA, Beattie S, Gómez-Donoso C, Loughman A, O’Neil A, et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes Rev. 2021;22(3):e13146. Doi: https://doi.org/10.1111/obr.13146

Peters R, Ee N, Peters J, Beckett N, Booth A, Rockwood K, et al. Common risk factors for major noncommunicable disease, a systematic overview of reviews and commentary: the implied potential for targeted risk reduction. Ther Adv Chronic Dis. 2019;10:2040622319880392. Doi: https://doi.org/10.1177/2040622319880392

Willett W, Rockström J, Loken B, al. et. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393:447–92. Doi: http://dx.doi.org/10.1016/S0140-6736(18)31788-4

Lassen AD, Christensen LM, Trolle E. Development of a Danish Adapted Healthy Reference Diet. Nutrients. 2020;12(3):738. Doi: https://doi.org/10.3390/nu12030738

Song G, Li M, Fullana-i-Palmer P, Williamson D, Wang Y. Dietary changes to mitigate climate change and benefit public health in China. Sci Total Environ. 2017 Jan 15;577:289–98. Doi: https://doi.org/10.1016/j.scitotenv.2016.10.184

Kovacs B, Miller L, Heller MC, Rose D. The carbon footprint of dietary guidelines around the world: a seven country modeling study. Nutr J. 2021;20(1):1–10. Doi: https://doi.org/10.1186/s12937-021-00669-6

Heller MC, Willits-Smith A, Meyer R, Keoleian GA, Rose D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ Res Lett [Internet]. 2018 Mar 20 [cited 2021 Jul 29];13(4):044004. Doi: https://doi.org/10.1088/1748-9326/aab0ac

Werner LB, Flysjö A, Tholstrup T. Greenhouse gas emissions of realistic dietary choices in Denmark: the carbon footprint and nutritional value of dairy products. Food Nutr Res [Internet]. 2014 Jun 10 [cited 2021 Jul 29];58. Doi: https://doi.org/10.3402/fnr.v58.20687

Kamp ME van de, Seves SM, Temme EHM. Reducing GHG emissions while improving diet quality: exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day. BMC Public Health [Internet]. 2018 Feb 20 [cited 2021 Jul 29];18(1). Doi: https://doi.org/10.1186/s12889-018-5132-3

Murakami K, Livingstone MBE. Greenhouse gas emissions of self-selected diets in the UK and their association with diet quality: is energy under-reporting a problem? Nutr J 2018 171 [Internet]. 2018 Feb 21 [cited 2021 Jul 29];17(1):1–10. Doi: https://doi.org/10.1186/s12937-018-0338-x

Tilman D, Clark M. Global diets link environmental sustainability and human health. Nat 2014 5157528 [Internet]. 2014 Nov 12 [cited 2021 Jul 29];515(7528):518–22. Doi: https://doi.org/10.1038/nature13959

Clark MA, Springmann M, Hill J, Tilman D. Multiple health and environmental impacts of foods. Proc Natl Acad Sci [Internet]. 2019 Nov 12 [cited 2021 Jul 29];116(46):23357–62. Doi: https://doi.org/10.1073/pnas.1906908116

Springmann M, Spajic L, Clark MA, Poore J, Herforth A, Webb P, et al. The healthiness and sustainability of national and global food based dietary guidelines: modelling study. BMJ [Internet]. 2020 Jul 15 [cited 2021 Jul 29];370:2322. Doi: https://doi.org/10.1136/bmj.m2322

Instituto Colombiano de Bienestar Familiar – ICBF. Guías alimentarias basadas en alimentos para la población colombiana mayor de 2 años. Manual para facilitadores para la población colombiana. ICBF-FAO. 2015 Disponible en: https://www.icbf.gov.co/sites/default/files/manual_facilitadores_gaba.pdf

Instituto Colombiano de Bienestar Familiar – ICBF Caracterización y composición nutricional de 18 preparaciones tradicionales en la población colombiana. [cited 2021 Jul 29]; Disponible en: https://www.icbf.gov.co/caracterizacion-y-composicion-nutricional-de-18-preparaciones-tradicionales-en-la-poblacion

Padilla-González GF, Diazgranados M, Costa FB Da. Effect of the Andean Geography and Climate on the Specialized Metabolism of Its Vegetation: The Subtribe Espeletiinae (Asteraceae) as a Case Example. Metab. 2021 Apr 4 [cited 2021 Jul 29];11(4):220. Doi: https://doi.org/10.3390/metabo11040220

Avellaneda-Torres LM, León Sicard TE, Torres Rojas E. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils. Sci Total Environ. 2018 Aug 1;631–632:1600–10. Doi: https://doi.org/10.1016/j.scitotenv.2018.03.137

Bechthold A, Boeing H, Schwedhelm C, Hoffmann G, Knüppel S, Iqbal K, et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. [Internet]. 2017 Apr 12 [cited 2021 Jul 29];59(7):1071–90. Doi: https://doi.org/101080/1040839820171392288

Wang X, Lin X, Ouyang YY, Liu J, Zhao G, Pan A, et al. Red and processed meat consumption and mortality: dose–response meta-analysis of prospective cohort studies. Public Health Nutr [Internet]. 2016 Apr 1 [cited 2021 Jul 29];19(5):893–905. Doi: https://doi.org/10.1017/S1368980015002062

Zheng Y, Li Y, Satija A, Pan A, Sotos-Prieto M, Rimm E, et al. Association of changes in red meat consumption with total and cause specific mortality among US women and men: two prospective cohort studies. BMJ [Internet]. 2019 Jun 12 [cited 2021 Jul 29];365. https://doi.org/10.1136/bmj.l2110

MacLeod MJ, Hasan MR, Robb DHF, Mamun-Ur-Rashid M. Quantifying greenhouse gas emissions from global aquaculture. Sci Rep. 2020;10(1):11679. https://doi.org/10.1038/s41598-020-68231-8

Pragna P, Chauhan SS, Sejian V, Leury BJ, Dunshea FR. Climate change and goat production: Enteric methane emission and its mitigation. Animals (Basel). 2018;8(12):235. https://doi.org/10.3390/ani8120235

Contreras D, Voets A, Junghardt J, Bhamidipati S, Contreras S. The Drivers of Child Mortality During the 2012–2016 Drought in La Guajira, Colombia. Int J Disaster Risk Sci 2020 111 [Internet]. 2020 Feb 19 [cited 2021 Jul 29];11(1):87–104. https://doi.org/10.1007/s13753-020-00255-0

López-Ríos JM, Cristancho-Marulanda S, Posada-Zapata IC. Perspectivas comunitarias alrededor de la desnutrición infantil en tres comunidades wayúus de La Guajira (Colombia). Rev. Cienc. salud [Internet]. 7 de mayo de 2021 [citado 3 de octubre de 2021];19(2). Doi: https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.10286

Espitia PJP, Lissbrant S, Moyano-Tamara L. Social and cultural perceptions regarding food security and health in the departments of bolivar and la Guajira, in the Caribbean region of Colombia. J Hunger Environ Nutr. 2018;13(2):255–76. https://doi.org/10.1080/19320248.2017.1337533

Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. La Guajira. (sitio en Internet). Consultado en 14 de junio de 2021. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022963/fichas_departamentales/la_guajira_fichatecnica.pdf

Springmann M, Wiebe K, Mason-D’Croz D, Sulser TB, Rayner M, Scarborough P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Heal [Internet]. 2018 Oct 1 [cited 2021 Jul 29];2(10):e451. https://doi.org/10.1016/S2542-5196(18)30206-7

Jayedi A, Shab-Bidar S. Fish Consumption and the Risk of Chronic Disease: An Umbrella Review of Meta-Analyses of Prospective Cohort Studies. Adv Nutr [Internet]. 2020 Sep 1 [cited 2021 Jul 29];11(5):1123–33. Doi: https://doi.org/10.1093/advances/nmaa029

Zhang B, Xiong K, Cai J, Ma A. Fish Consumption and Coronary Heart Disease: A Meta-Analysis. Nutr. 2020 Jul 29 [cited 2021 Jul 29];12(8):2278. Doi: https://doi.org/10.3390/nu12082278

Bogard JR, Farmery AK, Little DC, Fulton EA, Cook M. Will fish be part of future healthy and sustainable diets? Lancet Planet Heal [Internet]. 2019 Apr 1 [cited 2021 Jul 29];3(4):e159–60. Doi: https://doi.org/10.1016/S2542-5196(19)30018-X

Colombia. Ley No 2120. Por medio de la cual se adoptan medidas para fomentar entornos alimentarios saludables y prevenir enfermedades no transmisibles y se adoptan otras disposiciones. 30 de julio de 2021. Disponible en: http://www.andi.com.co/Uploads/LEY%202120%20DEL%2030%20DE%20JULIO%20DE%202021.pdf

Clark M, Macdiarmid J, Jones AD, Ranganathan J, Herrero M, Fanzo J. The Role of Healthy Diets in Environmentally Sustainable Food Systems: Food Nutr Bull. 2020 Dec [cited 2021 Jul 29] ;41(2_suppl):31S-58S. Doi: https://doi.org/10.1177/0379572120953734

Herrero M, Thornton PK, Mason-D’Croz D, Palmer J, Bodirsky BL, Pradhan P, et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet Health. 2021 Jan 1;5(1):e50–62. Doi: https://doi.org/10.1016/S2542-5196(20)30277-1

Artículos más leídos del mismo autor/a