Effects of 30-second active stretching on manual grip strength in young adults: A randomized cross-over study

Main Article Content

Oscar Eduardo Mateus-Arias
Melissa Echeverría-Rueda
Marlyn Estefany López-Páez
Javier Martínez-Torres

Abstract

Introduction: grip strength is an indicator of health, as well as a predictor of functional disability, morbidity and mortality. Grip strength protocols do not take into account stretching prior to these. Stretching significantly decreases muscle force production capabilities. Objective: to determine the effect of 30-second stretching on grip strength in healthy young adults. Methods: randomized, parallel, two-arm, blinded clinical trial. 80 young adult volunteers, aged 20-37 years participated in the study. They were randomly assigned to two intervention sequences manual prehensile strength measurement and active wrist flexor stretching for 30 seconds followed by manual prehensile strength measurement with a 24-hour washout period between the two interventions. A generalized linear model was used to estimate the efficacy of the intervention. Results: a 30-second static stretching of the flexor muscles of the hand generated a significant decrease in strength of -1.66 (-2.66 to -0.67). Conclusions: stretching prior to the measurement of the manual prehensile strength generates a decrease in this.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mateus-Arias, O. E., Echeverría-Rueda, M., López-Páez , M. E., & Martínez-Torres, J. (2024). Effects of 30-second active stretching on manual grip strength in young adults: A randomized cross-over study. Duazary, 21(4), 285–294. https://doi.org/10.21676/2389783X.6128
Section
Articles of scientific and technological research

References

Lima TR, Almeida VP, Ferreira AS, Guimarães FS, Lopes AJ. Handgrip strength and pulmonary disease in the elderly: What is the link? Aging Dis. 2019;10:1109-29. https://doi.org/10.14336/AD.2018.1226

Porto JM, Nakaishi AP, Cangussu-Oliveira LM, Freire Júnior RC, Spilla SB, Abreu, DC. Relationship between grip strength and global muscle strength in community-dwelling older people. Arch Gerontol Geriatr. 2019;82:273-8. https://doi.org/10.1016/j.archger.2019.03.005

Bobos P, Nazari G, Lu Z, MacDermid JC. Measurement properties of the hand grip strength assessment: A systematic review with meta-analysis. Arch Phys Med Rehabil. 2020;101:553-65. https://doi.org/10.1016/j.apmr.2019.10.183

Bohannon RW. Muscle Strength: Clinical and prognostic value of hand-grip dynamometry. Curr Op Clin Nutr Metab Care. 2015;18:465-70. https://doi.org/10.1097/MCO.0000000000000202

Hogrel JY. Grip strength measured by high precision dynamometry in healthy subjects from 5 to 80 years. BMC Musculoskelet Disord. 2015;16:1-11. https://doi.org/10.1186/s12891-015-0612-4

Kunutsor SK, Mäkikallio TH, Voutilainen A, Hupin D, Laukkanen JA. Normalized handgrip strength and future risk of hypertension: Findings from a prospective cohort study. Scand Cardiovasc J. 2021;55:336-9. https://doi.org/10.1080/14017431.2021.1983206

Kunutsor SK, Voutilainen A, Laukkanen JA. Handgrip strength improves prediction of type 2 diabetes: A prospective cohort study. Ann Med. 2020;52:471-8. https://doi.org/10.1080/07853890.2020.1815078

Laukkanen JA, Khan H, Lavie CJ, Voutilainen A, Kurl S, Jae SY, et al. Inverse association of handgrip strength with risk of heart failure. Mayo Clin Proc. 2021;96:1490-9. https://doi.org/10.1016/j.mayocp.2020.09.040

Lian Y, Wang GP, Chen GQ, Jia CX. Bidirectional associations between handgrip strength and depressive symptoms: A longitudinal cohort study. J Am Med Dir Assoc. 2021;22:1744-50. https://doi.org/10.1016/j.jamda.2021.04.006

Martínez-Torres J, Gallo-Villegas JA, Aguirre-Acevedo DC. Normative values for handgrip strength in colombian children and adolescents from 6 to 17 years of age: Estimation using quantile regression. J Pediatr. 2022;98:590-8. https://doi.org/10.1016/j.jped.2022.02.004

Laukkanen JA, Voutilainen A, Kurl S, Araujo CG, Jae S Y Kunutsor S K. Handgrip strength is inversely associated with fatal cardiovascular and all-cause mortality events. Ann Med. 2020;52:109-19. https://doi.org/10.1080/07853890.2020.1748220

Buckinx F, Croisier JL, Reginster JY, Dardenne N, Beaudart C, Slomian J, et al. Reliability of muscle strength measures obtained with a hand-held dynamometer in an elderly population. Clin Physiol Funct Imaging. 2017;37:332-40. https://doi.org/10.1111/cpf.12300

Hamilton GF, McDonald C, Chenier TC. Measurement of grip strength: Validity and reliability of the sphygmomanometer and jamar grip dynamometer. J Orthop Sports Phys Ther. 1992;16:215-9. https://doi.org/10.2519/jospt.1992.16.5.215

Shechtman O, Gestewitz L, Kimble C. Reliability and validity of the dynex dynamometer. J Hand Ther. 2005;18:339-47. https://doi.org/10.1197/j.jht.2005.04.002

Huang L, Liu Y, Lin T, Hou L, Song Q, Ge N, et al. Reliability and validity of two hand dynamometers when used by community-dwelling adults aged over 50 years. BMC Geriatr. 2022;22:580. https://doi.org/10.1186/s12877-022-03270-6

Higgins SC, Adams J, Hughes R. Measuring hand grip strength in rheumatoid arthritis. Rheumatol Int. 2018;38:707-14. https://doi.org/10.1007/s00296-018-4024-2

Martínez-Torres J, Gallo-Villegas, JA, Aguirre-Acevedo DC. Anthropometric and body composition characteristics associated with handgrip strength in children and adolescents. A scoping review. Andes Pediatr. 2022;93:906-17. https://doi.org/10.32641/andespediatr.v93i6.4408

Sousa-Santos AR, Amaral, TF. Differences in handgrip strength protocols to identify sarcopenia and frailty - A systematic review. BMC Geriatr. 2017;17:238. https://doi.org/10.1186/s12877-017-0625-y

Mateus-Arias OE, Santos-Gómez AF, Suarez-Caicedo AM, Morales-Gonzáles Y, Martínez-Torres J. Eficacia de La técnica sostener relajar en comparación con el estiramiento dinámico sobre la flexibilidad de los isquiotibiales. Med UPB. 2023;42:17-25. https://doi.org/10.18566/medupb.v42n2.a03

Cai P, Liu L, Li H. Dynamic and static stretching on hamstring flexibility and stiffness: A systematic review and meta-analysis. Heliyon. 2023;9:e18795. https://doi.org/10.1016/j.heliyon.2023.e18795

Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol. 2011;111:2633-51. https://doi.org/http://dx.doi.org/10.1007/s00421-011-1879-2

Simic L, Sarabon N, Markovic G. Does pre-exercise static stretching inhibit maximal muscular performance? A meta-analytical review. Scand J Med Sci Sport. 2013;23:131-48. https://doi.org/10.1111/j.1600-0838.2012.01444.x

Walsh GS. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength. Hum Mov Sci. 2017;55:189-95. https://doi.org/10.1016/j.humov.2017.08.014

Kataura S, Suzuki S, Matsuo S, Hatano G, Iwata M, Yokoi K, et al. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res. 2017;31:3403-10. https://doi.org/10.1519/JSC.0000000000001752

Rodrigues P, Hernandez SG, De Macedo Salgueirosa F, Novack LF, Wassmansdorf R, Wharton L, et al. The influence of two static stretching protocols with different intensities on concentric knee extension strength. Isokinet Exerc Sci. 2017;25:41-6. https://doi.org/10.3233/IES-160643

Bryant J, Cooper DJ, Peters DM, Cook MD. The effects of static stretching intensity on range of motion and strength: A systematic review. J Funct Morphol Kinesiol. 2023;8:1-16. https://doi.org/10.3390/jfmk8020037

Matsuo S, Suzuki S, Iwata M, Banno Y, Tsuchida Y, Inour T. Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force. J Strength Cond Res. 2013;27:3367-76. https://doi.org/http://dx.doi.org/10.1519/JSC.0b013e318290c26f

Nakamura M, Suzuki Y, Yoshida R, Kasahara K, Murakami Y, Hirono T, et al. The time-course changes in knee flexion range of motion, muscle strength, and rate of force development after static stretching. Front Physiol. 2022;13:917661. https://doi.org/10.3389/fphys.2022.917661

Siatras TA, Mittas VP, Mameletzi DN, Vamvakoudis EA. The duration of the inhibitory effects with static stretching on quadriceps peak torque production. J Strength Cond Res. 2008;22:40-6. https://doi.org/10.1519/JSC.0b013e31815f970c

Takeuchi K, Nakamura M. Influence of high intensity 20-second static stretching on the flexibility and strength of hamstrings. J Sports Sci Med. 2020;19:429-35.

Sato S, Kiyono R, Takahashi N, Yoshida T, Takeuchi K, Nakamura M. The acute and arolonged affects of 20-s static stretching on muscle strength and shear elastic modulus. PLoS One. 2020;15:e0228583. https://doi.org/10.1371/journal.pone.0228583

Fowles JR, Sale DG, Macdougall JD. Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol. 2000;89:1179–88. https://doi.org/10.1152/jappl.2000.89.3.1179

Kellis E, Blazevich AJ. Hamstrings force-length relationships and their implications for angle-specific joint torques: A narrative review. BMC Sports Sci Med Rehabil. 2022;14:1-34. https://doi.org/10.1186/s13102-022-00555-6

Cudicio A, Martinez-Valdes E, Cogliati M, Orizio C, Negro F. The force-generation capacity of the tibialis anterior muscle at different muscle–tendon lengths depends on its motor unit contractile properties. Eur J Appl Physiol. 2022;122:317-30. https://doi.org/10.1007/s00421-021-04829-8

Martinez-Valdes E, Negro F, Botter A, Pincheira PA, Cerone G L, Falla D, et al. Modulations in motor unit discharge are related to changes in fascicle length during isometric contractions. J Appl Physiol. 2022;133:1136-48. https://doi.org/10.1152/japplphysiol.00758.2021

Miyazaki M, Maeda S. Changes in hamstring flexibility and muscle strength during the menstrual cycle in healthy young females. J Phys Ther Sci. 2022;34:92-8. https://doi.org/10.1589/jpts.34.92

Nagahori H, Shida N. Relationship between muscle flexibility and characteristics of muscle contraction in healthy women during different menstrual phases. Phys Ther Res. 2022;25:68-74. https://doi.org/10.1298/ptr.e10173

Most read articles by the same author(s)