Ensayo de biocompatibilidad con Artemia salina para cinco materiales de uso endodóntico

Contenido principal del artículo

Leidy Johanna Torres-Avirama
Daniela Alexandra Realpe-Urbano
Tania Lizeth Guevara-Valencia
Gilbert Alfonso Morales
Ingrid Ximena Zamora-Córdoba
Carlos Humberto Valencia-Llano

Resumen

Introducción: la biocompatibilidad es un factor decisivo para el éxito de una terapia endodoncica. Objetivo: evaluar la citotoxicidad de cinco materiales de uso endodóntico mediante la prueba de Artemia Salina. Método: se diseñó un estudio experimental in vitro, empleando Artemia salina, para evaluar la biocompatibilidad de los cementos Grossman, CaOH, AH-Plus, MTA y TheraCal-LC con observaciones a 24 y 48 horas. Resultados: los resultados indican que el cemento Grossman presenta un 100% de toxicidad a las 24 horas, mientras que los demás materiales muestran valores menores al 30%, reflejando un comportamiento biocompatible, sin embargo, a las 48 horas, CaOH y TheraCal-LC presentan una toxicidad mayor al 30%, mientras que AH-Plus y MTA continúan con valores -menores del 30%. Los datos fueron analizados con un Modelo lineal generalizado con distribución de errores binomial, un análisis de devianza, y la prueba de comparación múltiple de Fisher con corrección Bonferroni.  Se hizo un análisis independiente para las 24 y 48 horas, bajo un nivel de significancia α=5%, se encontraron diferencias significativas a las 48 horas entre TheraCal-LC y AH-Plus y MTA. Conclusión: se concluye que el cemento Grossman presentó un alto grado de toxicidad, mientras que AH-Plus y MTA mostraron la mayor biocompatibilidad

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Torres-Avirama, . L. J., Realpe-Urbano, D. A., Guevara-Valencia, T. L., Morales, G. A., Zamora-Córdoba, I. X., & Valencia-Llano, C. H. (2022). Ensayo de biocompatibilidad con Artemia salina para cinco materiales de uso endodóntico. Duazary, 20(2), 105–114. https://doi.org/10.21676/2389783X.5360
Sección
Artículo de investigación científica y tecnológica

Citas

Machado R, Silva Neto UX, Carneiro E, Fariniuk LF, Westphalen VP, Cunha RS. Lack of correlation between tubular dentine cement penetration, adhesiveness and leakage in roots filled with gutta percha and an endodontic cement based on epoxy amine resin. J. Appl. Oral Sci. 2014; 22(1):22–28. https://doi.org/10.1590/1678-775720130247

Koch KA, Brave DG. Bioceramics, part I: the clinician's viewpoint. Dent Today. 2012; 31(1):130-135.

Tedesco M, Chain MC, Felippe WT, Alves AMH, Garcia LDFR, Bortoluzzi EA, Cordeiro MR, Teixeira CS. Correlation between bond strength to dentin and sealers penetration by push-out test and CLSM analysis. Braz. Dent. J. 2019; 30(6):555–562. https://doi.org/10.1590/0103-6440201902766.

Singh H, Markan S, Kaur M, Gupta G. “Endodontic Sealers”: Current concepts and comparative analysis. Dent Open J. 2015; 2(1): 32-37. https://doi.org/10.17140/doj-2-107.

Öter B, Topçuoglu N, Tank M. K, Çehreli S. B. Evaluation of Antibacterial Efficiency of Different Root Canal Disinfection Techniques in Primary Teeth. Photomed. Laser Surg. 2018; 36(4): 179–184. https://doi.org/10.1089/pho.2017.4324

Kikly A, Jaâfoura S, Kammoun D, Sahtout S. Sealing Ability of Endodontic Cements: An In Vitro Study. Int J Dent. 2020; 2020. https://doi.org/10.1155/2020/5862598.

Primus C, Gutmann JL, Tay FR, Fuks AB. Calcium silicate and calcium aluminate cements for dentistry reviewed. J. Am. Ceram. Soc. 2022; 105(3): 1841–1863. https://doi.org/10.1111/jace.18051.

Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B. Regenerative endodontics: a comprehensive review. Int Endod J. 2018; 51(12): 1367-1388. https://doi.org/10.1111/iej.12954

Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007; 33(4): 377-90. https://doi.org/10.1016/j.joen.2006.09.013

Santiago DE, LaO Salas NO, Castellanos CI, Marzo SR. Algunos fundamentos de la endodoncia regenerativa con células madre en el diente permanente inmaduro no vital. MEDISAN. 2021; 25(2): 470–488.

Kontakiotis EG, Filippatos CG, Tzanetakis GN, Agrafioti A. Regenerative endodontic therapy: a data analysis of clinical protocols. J Endod. 2015 Feb;41(2):146-54. https://doi.org/10.1016/j.joen.2014.08.003

Muhammad W. Ullah N, Khans M, Ahmad W, Khan MQ, Abbasi BH. Why Brine shrimp (Artemia salina) larvae is used as a screening system for nanomaterials? The science of procedure and nano-toxicology: A review. Int. J. Biosci. 2019; 14(5): 156-176.

Vanhaecke P, Persoone G. The ARC-test: a standardized short-term routine toxicity test with Artemia nauplii: methodology and evaluation. Ecotoxicological Test. Mar. Environ. 1984; 2:143-157.

Rotini A, Manfra L, Canepa S, Tornambè A, Migliore L. Can Artemia Hatching Assay Be a (Sensitive) Alternative Tool to Acute Toxicity Test? Bull Environ Contam Toxicol. 2015; 95(6): 745-51. https://doi.org/10.1007/s00128-015-1626-1

Abushaala NM. Effects of tributyltin chloride on cell structures of epithelial layer in different stages of Artemia salina. Open Veterinary Journal. 2019; 9(4), 366-374. https://doi.org/10.4314/ovj.v9i4.15.

Pecoraro R, Scalisi EM, Messina G, Fragalà G, Ignoto S, Salvaggio A, et al. Artemia salina: A microcrustacean to assess engineered nanoparticles toxicity. Microsc Res Tech. 2020;84(3):531–6. https://doi.org/10.1002/jemt.23609

Libralato G. The case of Artemia spp. in nanoecotoxicology. Mar Environ Res. 2014;101(1):38–43. https://doi.org/10.1016/j.marenvres.2014.08.002

Strathmann RR. Culturing larvae of marine invertebrates. Methods Mol Biol. 2014; 1128:1-25. https://doi.org/10.1007/978-1-62703-974-1_1

Demarchi CA, da Silva LM, Niedźwiecka A, Ślawska-Waniewska A, Lewińska S, Dal Magro J, et al. Nanoecotoxicology study of the response of magnetic O-Carboxymethylchitosan loaded silver nanoparticles on Artemia salina. Environ Toxicol Pharmacol. 2020; 74. https://doi.org/10.1016/j.etap.2019.103298

Kamal IM, Abdeltawab NF, Ragab YM, Farag MA, Ramadan MA. Biodegradation, Decolorization, and Detoxification of Di-Azo Dye Direct Red 81 by Halotolerant, Alkali-Thermo-Tolerant Bacterial Mixed Cultures. Microorganisms. 2022; 10(5); 994. https://doi.org/10.3390/microorganisms10050994

Sarmento PA, Ataíde TR, Fernandez BAP, Junio JXA, Leite LIM, Bastos MLA. Avaliação do extrato da Zeyheria tuberculosa na perspectiva de um produto para cicatrização de feridas. Rev. Latino-Am. Enfermagem. 2014; 22(1): 165-72 https://doi.org/10.1590/0104-1169.3143.2385.

Albuquerque P, Rocha T, Fernandes A, Araújo J, Leite I, Assis M. Evaluación del extracto de la Zeyheria tuberculosa en la perspectiva de un producto para cicatrización de heridas. Rev. Latino-Am. Enfermagem, 2014; 22(1). https://doi.org/10.1590/0104-1169.3143.2385%20

Bender R, Lange S. Multiple test procedures other than Bonferroni's deserve wider use. BMJ. 1999;318(7183):600-1. https://doi.org/10.1136%2Fbmj.318.7183.600a

Islam SU, Ahmed MB, Shehzad A, Lee YS. Methanolic Extract of Artemia salina Eggs and Various Fractions in Different Solvents Contain Potent Compounds That Decrease Cell Viability of Colon and Skin Cancer Cell Lines and Show Antibacterial Activity against Pseudomonas aeruginosa. Evid Based Complement Alternat Med. 2019; 6(2019). https://doi.org/10.1155/2019/9528256

Omidi S, Javidi M, Zarei M, Mushakhian S, Jafarian A. Subcutaneous Connective Tissue Reaction to a New Nano Zinc-Oxide Eugenol Sealer in Rat Model. Iran Endod J. 2017;12(1): 64-69. https://doi.org/10.22037/iej.2017.13.

Vinola SMJ, Karthikeyan K, Mahalaxmi S. A novel petasin-modified zinc oxide eugenol sealer. J Conserv Dent. 2019; 22(5): 490-494. https://doi.org/10.4103/jcd.jcd_475_19

Raimara, GE. Eugenol: propiedades farmacológicas y toxicológicas. Ventajas y desventajas de su uso. Rev Cuba. Estomatol. 2002; 39(2): 139-156.

Muñoz CJP, Arteaga ESX, Alvarado SAM. Observaciones acerca del uso del hidróxido de calcio en la endodoncia. Dom. Cien. 2018; 4(1): 352-361. https://doi.org/10.23857/dc.v4i1.747

Farias MD, Matos FD, Carvalho NC, Almeida RP, Mendonça AA, Junior RA, et al. Assessment of intracanal medications cytotoxicity on l929 fibroblast cells. Bioscience Journal. 2016; 32(2):566–573. https://doi.org/10.14393/BJ-v32n2a2016-30974

Saygili G, Saygili S, Tuglu I, Davut Capar I. In Vitro Cytotoxicity of GuttaFlow Bioseal, GuttaFlow 2, AH-Plus and MTA Fillapex. Iran Endod J. 2017; 12(3): 354-359. https://doi.org/10.22037/iej.v12i3.15415.

Bu Hasna A, de Paula Ramos L, Campos TMB, de Castro Lopes SLP, Rachi MA, de Oliveira LD, et al. Biological and chemical properties of five mineral oxides and of mineral trioxide aggregate repair high plasticity: an in vitro study. Sci Rep. 2022; 12(1):14123. https://doi.org/10.1038/s41598-022-17854-0.

Koulaouzidou EA, Economides N, Beltes P, Geromichalos G, Papazisis K. In vitro evaluation of the cytotoxicity of ProRoot MTA and MTA Angelus. J Oral Sci. 2008; 50(4): 397-402. https://doi.org/10.2334/josnusd.50.397

Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J. 2017; 50(S2):63-72. https://doi.org/10.1111/iej.12859

Almeida MM, Rodrigues CT, Matos AA, Carvalho KK, Silva EJ, Duarte MA, et al. Analysis of the physicochemical properties, cytotoxicity and volumetric changes of AH Plus, MTA Fillapex and TotalFill BC Sealer. J Clin Exp Dent. 2020; 12(11): e1058-e1065 https://doi.org/10.4317/jced.57527

Alazrag MA, Abu-Seida AM, El-Batouty KM, El Ashry SH. Marginal adaptation, solubility and biocompatibility of TheraCal LC compared with MTA-angelus and biodentine as a furcation perforation repair material. BMC Oral Health. 2020;20(1): 298. https://doi.org/10.1186/s12903-020-01289-y