Caracterización fenotípica del síndrome amelogénesis imperfecta–nefrocalcinosis: una revisión

Contenido principal del artículo

Victor Simancas-Escorcia
http://orcid.org/0000-0003-0910-030X
Ariane Berdal
http://orcid.org/0000-0001-5833-5813
Antonio Díaz-Caballero
http://orcid.org/0000-0001-9693-2969

Resumen

La Amelogénesis Imperfecta (AI) es alteración de la estructura y apariencia del esmalte dental de origen genético, puede presentarse como defecto aislado o sistémico. El Síndrome Amelogénesis imperfecta–Nefrocalcinosis (OMIM # 204690), también conocido como Síndrome Esmalte-Renal (ERS, en inglés), se caracteriza por la presencia de AI de tipo hipoplásico, hiperplasia gingival con mineralizaciones ectópicas, retraso y/o ausencia de la erupción dental y Nefrocalcinosis. Este síndrome es asociado a mutaciones autosómicas recesivas del gen FAM20A. El objetivo de esta revisión es exponer las características clínicas y fenotípicas de pacientes con el Síndrome Amelogénesis imperfecta–Nefrocalcinosis. La obtención del material fue realizado mediante una búsqueda electrónica en las bases de datos MEDLINE (PubMed), EBSCO- Host  y Scopus (ScienceDirect). Los resultados confirman la escasa frecuencia de casos clínicos con el Síndrome Amelogénesis imperfecta–Nefrocalcinosis. Las características clínicas y fenotípicas se exponen de manera clara, sencilla y precisa. Se recomienda a los odontólogos generales y odontólogos pediátricos que al diagnosticar una AI, particularmente de tipo hipoplásico, realicen una detallada historia médica personal - familiar y contemplen una interconsulta con el servicio de nefrología que permita diagnosticar o realizar un seguimiento al estado renal del paciente de una forma preventiva.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Simancas-Escorcia, V., Berdal, A., & Díaz-Caballero, A. (2019). Caracterización fenotípica del síndrome amelogénesis imperfecta–nefrocalcinosis: una revisión. Duazary, 16(1), 129–143. https://doi.org/10.21676/2389783X.2531
Sección
Artículo de revisión

Citas

1. Prasad MK, Laouina S, El Alloussi M, Dollfus H, Bloch-Zupan A. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes. J Dent Res. 2016;95(13):1457-63. https://doi.org/10.1177/0022034516663200

2. Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet Journal of Rare Diseases. 2007;2(1):17. https://doi.org/10.1186/1750-1172-2-17

3. Witkop CJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988;17.

4. Sayer JA, Carr G, Simmons NL. Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci (Lond). 2004;106(6):549-61. Disponible en: http://doi.org/10.1042/CS20040048

5. Dogan CS, Uslu-Gokceoglu A, Comak E, Alimoglu E, Koyun M, Akman S. Renal function and linear growth of children with nephrocalcinosis: a retrospective single-center study. Turk J Pediatr. 2013;55(1):58-62. Disponible en: http://www.turkishjournalpediatrics.org/uploads/pdf_TJP_1151.pdf

6. Al-Bderat JT, Mardinie RI, Salaita GM, Al-Bderat AT, Farrah MK. Nephrocalcinosis among children at king hussein medical center: Causes and outcome. Saudi J Kidney Dis Transpl. 2017;28(5):1064-8. Disponible en: http://www.sjkdt.org/test.asp?2017/28/5/1064/215138

7. Wrong O. Nephrocalcinosis. 4 ed. Davison AM. Oxford UOU, editor: Oxford University Press; 2005.

8. Hooda AK, Narula AS, Raychaudhury N, Chatterji S. Renal cortical nephrocalcinosis following acute renal failure due to polytrauma. Ren Fail. 2007;29(2):231-3. Disponible en: http://dx.doi.org/10.1080/08860220601098979

9. Oliveira B, Kleta R, Bockenhauer D, Walsh SB. Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am J Physiol Renal Physiol. 2016;311(6):F1243-F52. Disponible en: https://doi.org/10.1152/ajprenal.00211.2016

10. Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, et al. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics. 2005;6:11. Disponible en: https://doi.org/10.1186/1471-2164-6-11

11. Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336(6085):1150-3. Disponible en: https://doi.org/10.1126/science.1217817

12. Pollak AJ, Haghighi K, Kunduri S, Arvanitis DA, Bidwell PA, Liu G-S, et al. Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proceedings of the National Academy of Sciences. 2017;114(34):9098-103. Disponible en: https://doi.org/10.1073/pnas.1706441114

13. Oya K, Ishida K, Nishida T, Sato S, Kishino M, Hirose K, et al. Immunohistochemical analysis of dentin matrix protein 1 (Dmp1) phosphorylation by Fam20C in bone: implications for the induction of biomineralization. Histochem Cell Biol. 2017;147(3):341-51. Disponible en: https://doi.org/10.1007/s00418-016-1490-z

14. Raine J, Winter RM, Davey A, Tucker SM. Unknown syndrome: microcephaly, hypoplastic nose, exophthalmos, gum hyperplasia, cleft palate, low set ears, and osteosclerosis. J Med Genet. 1989;26(12):786-8. Disponible en:http://dx.doi.org.gate2.inist.fr/10.1136/jmg.26.12.786

15. Whyte MP, McAlister WH, Fallon MD, Pierpont ME, Bijanki VN, Duan S, et al. Raine Syndrome (OMIM #259775), Caused By FAM20C Mutation, Is Congenital Sclerosing Osteomalacia With Cerebral Calcification (OMIM 259660). J Bone Miner Res. 2017;32(4):757-69. Disponible en: http://dx.doi.org/10.1002/jbmr.3034

16. Koike T, Izumikawa T, Sato B, Kitagawa H. Identification of phosphatase that dephosphorylates xylose in the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem. 2014;289(10):6695-708.

17. Ma P, Yan W, Tian Y, Wang J, Feng JQ, Qin C, et al. Inactivation of Fam20B in Joint Cartilage Leads to Chondrosarcoma and Postnatal Ossification Defects. Sci Rep. 2016;6:29814. Disponible en: http://rdcu.be/yKvS

18. Cui J, Xiao J, Tagliabracci VS, Wen J, Rahdar M, Dixon JE. A secretory kinase complex regulates extracellular protein phosphorylation. Elife. 2015;4:e06120. Disponible en: https://doi.org/10.7554/eLife.06120.001

19. Cui J, Zhu Q, Zhang H, Cianfrocco MA, Leschziner AE, Dixon JE, et al. Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. Elife. 2017;6. Disponible en: https://doi.org/10.7554/eLife.23990.001

20. Ohyama Y, Lin J-H, Govitvattana N, Lin IP, Venkitapathi S, Alamoudi A, et al. FAM20A binds to and regulates FAM20C localization. Scientific Reports. 2016;6:27784. Disponible en: http://rdcu.be/yKvJ

21. Lignon G, Beres F, Quentric M, Rouziere S, Weil R, De La Dure-Molla M, et al. FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization? Front Physiol. 2017;8:267. Disponible en: https://doi.org/10.3389/fphys.2017.00267

22. MacGibbon D. Generalized enamel hypoplasia and renal dysfunction. Aust Dent J. 1972;17(1):61-3.

23. Lubinsky M, Angle C, Marsh PW, Witkop CJ, Jr. Syndrome of amelogenesis imperfecta, nephrocalcinosis, impaired renal concentration, and possible abnormality of calcium metabolism. Am J Med Genet. 1985;20(2):233-43.

24. Hall RK, Phakey P, Palamara J, McCredie DA. Amelogenesis imperfecta and nephrocalcinosis syndrome. Case studies of clinical features and ultrastructure of tooth enamel in two siblings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(5):583-92. Disponible en: http://doi.org/10.1016/S1079-2104(05)80100-3

25. Dellow EL, Harley KE, Unwin RJ, Wrong O, Winter GB, Parkins BJ. Amelogenesis imperfecta, nephrocalcinosis, and hypocalciuria syndrome in two siblings from a large family with consanguineous parents. Nephrol Dial Transplant. 1998;13(12):3193-6. Disponible en: https://doi.org/10.1093/ndt/13.12.3193

26. Normand de la Tranchade I, Bonarek H, Marteau JM, Boileau MJ, Nancy J. Amelogenesis imperfecta and nephrocalcinosis: a new case of this rare syndrome. J Clin Pediatr Dent. 2003;27(2):171-5. https://doi.org/10.17796/jcpd.27.2.3188100w6t4516j8

27. Paula LM, Melo NS, Silva Guerra EN, Mestrinho DH, Acevedo AC. Case report of a rare syndrome associating amelogenesis imperfecta and nephrocalcinosis in a consanguineous family. Arch Oral Biol. 2005;50(2):237-42. Disponible en: https://doi.org/10.1016/j.archoralbio.2004.11.023

28. Suda N, Kitahara Y, Ohyama K. A case of amelogenesis imperfecta, cleft lip and palate and polycystic kidney disease. Orthod Craniofac Res. 2006;9(1):52-6.

29. Hunter L, Addy LD, Knox J, Drage N. Is amelogenesis imperfecta an indication for renal examination? Int J Paediatr Dent. 2007;17(1):62-5.

30. Fu XJ, Nozu K, Goji K, Ikeda K, Kamioka I, Fujita T, et al. Enamel-renal syndrome associated with hypokalaemic metabolic alkalosis and impaired renal concentration: a novel syndrome? Nephrol Dial Transplant. 2006;21(10):2959-62. Disponible en: http://doi.org/10.1093/ndt/gfl328

31. Elizabeth J, Lakshmi Priya E, Umadevi KM, Ranganathan K. Amelogenesis imperfecta with renal disease--a report of two cases. J Oral Pathol Med. 2007;36(10):625-8.

32. Kirzioglu Z, Ulu KG, Sezer MT, Yuksel S. The relationship of amelogenesis imperfecta and nephrocalcinosis syndrome. Med Oral Patol Oral Cir Bucal. 2009;14(11):e579-82. Disponible en: http://www.medicinaoral.com/medoralfree01/v14i11/medoralv14i11p579.pdf

33. De la Dure-Molla M, Quentric M, Yamaguti PM, Acevedo AC, Mighell AJ, Vikkula M, et al. Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare Dis. 2014;9:84. Disponible en:https://doi.org/10.1186/1750-1172-9-84

34. Costa DC, Dourado MR, Figueiredo de Carvalho MF, Santos CR, da Cruz Batista MA, Mesquita AT. Enamel Renal Syndrome: A Case History Report. Int J Prosthodont. 2017;30(1):22-4.

35. Pêgo SPB, Coletta RD, Dumitriu S, Iancu D, Albanyan S, Kleta R, et al. Enamel-renal syndrome in 2 patients with a mutation in FAM20 A and atypical hypertrichosis and hearing loss phenotypes. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2017;123(2):229-34.e2. Disponible en: http://dx.doi.org/10.1016/j.oooo.2016.09.226

36. Cho SH, Seymen F, Lee KE, Lee SK, Kweon YS, Kim KJ, et al. Novel FAM20A mutations in hypoplastic amelogenesis imperfecta. Hum Mutat. 2012;33(1):91-4.

37. O’Sullivan J, Bitu CC, Daly SB, Urquhart JE, Barron MJ, Bhaskar SS, et al. Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet. 2011;88(5):616-20. Disponible en: http://dx.doi.org/10.1016/j.ajhg.2011.04.005

38. Martelli-Júnior H, Santos Neto PE, Aquino SN, Santos CC, Borges SP, Oliveira EA, et al. Amelogenesis Imperfecta and Nephrocalcinosis Syndrome: A Case Report and Review of the Literature. Nephron Physiology. 2011;118(3):p62-p5. https://doi.org/10.1159/000322828

39. Kala Vani SV, Varsha M, Sankar YU. Enamel renal syndrome: a rare case report. J Indian Soc Pedod Prev Dent. 2012;30(2):169-72. Disponible en: http://www.jisppd.com/text.asp?2012/30/2/169/100006

40. Jaureguiberry G, De la Dure-Molla M, Parry D, Quentric M, Himmerkus N, Koike T, et al. Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiol. 2012;122(1-2):1-6. Disponible en: https://doi.org/10.1159/000349989

41. Kantaputra PN, Kaewgahya M, Khemaleelakul U, Dejkhamron P, Sutthimethakorn S, Thongboonkerd V, et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am J Med Genet A. 2014;164A(1):1-9.

42. Poornima P, Katkade S, Mohamed RN, Mallikarjuna R. Amelogenesis imperfecta with bilateral nephrocalcinosis. BMJ Case Rep. 2013;2013. Disponible en: http://www.contempclindent.org/text.asp?2015/6/2/262/156063

43. Rajathi JM, Austin RD, Mathew P. McGibbon Syndrome: a report of three siblings. Indian J Dent Res. 2013;24(4):511-4. Disponible en: http://www.ijdr.in/text.asp?2013/24/4/511/118377

44. Wang SK, Aref P, Hu Y, Milkovich RN, Simmer JP, El-Khateeb M, et al. FAM20A mutations can cause enamel-renal syndrome (ERS). PLoS Genet. 2013;9(2):e1003302. Disponible en: https://doi.org/10.1371/journal.pgen.1003302

45. Cabral RM, Kurban M, Rothman L, Wajid M, Shimomura Y, Petukhova L, et al. Autosomal recessive gingival hyperplasia and dental anomalies caused by a 29-base pair duplication in the FAM20A gene. J Hum Genet. 2013;58(8):566-7. Disponible en: http://rdcu.be/yKB9

46. Ashkenazi M, Rafe Z, Sarnat H, Levin L. Nephrocalcinosis associated with continuous enamel hypoplasia and severe alveolar bone loss: a case report and literature review. Pediatr Dent. 2014;36(3):250-3.

47. Wang SK, Reid BM, Dugan SL, Roggenbuck JA, Read L, Aref P, et al. FAM20A mutations associated with enamel renal syndrome. J Dent Res. 2014;93(1):42-8. Disponible en: https://doi.org/10.1177/0022034513512653

48. Kantaputra PN, Bongkochwilawan C, Kaewgahya M, Ohazama A, Kayserili H, Erdem AP, et al. Enamel-Renal-Gingival syndrome, hypodontia, and a novel FAM20A mutation. Am J Med Genet A. 2014;164A(8):2124-8.

49. Patel A, Jagtap C, Bhat C, Shah R. Bilateral nephrocalcinosis and amelogenesis imperfecta: A case report. Contemp Clin Dent. 2015;6(2):262-5. Disponible en: http://www.contempclindent.org/text.asp?2015/6/2/262/156063

50. Cherkaoui Jaouad I, El Alloussi M, Chafai El alaoui S, Laarabi FZ, Lyahyai J, Sefiani A. Further evidence for causal FAM20A mutations and first case of amelogenesis imperfecta and gingival hyperplasia syndrome in Morocco: a case report. BMC Oral Health. 2015;15(1):14. Disponible en: https://doi.org/10.1186/1472-6831-15-14

51. Volodarsky M, Zilberman U, Birk OS. Novel FAM20A mutation causes autosomal recessive amelogenesis imperfecta. Arch Oral Biol. 2015;60(6):919-22. Disponible en: https://doi.org/10.1016/j.archoralbio.2015.02.018

52. Poulter JA, Smith CE, Murrillo G, Silva S, Feather S, Howell M, et al. A distinctive oral phenotype points to FAM20A mutations not identified by Sanger sequencing. Mol Genet Genomic Med. 2015;3(6):543-9.

53. Cherkaoui Jaouad I, Lyahyai J, Guaoua S, El Alloussi M, Zrhidri A, Doubaj Y, et al. Novel splice site mutation in CNNM4 gene in a family with Jalili syndrome. European Journal of Medical Genetics. 2017;60(5):239-44. Disponible en: https://doi.org/10.1016/j.ejmg.2017.02.004

54. Zhao N, Han D, Liu H, Li Y, Wong S-W, Cao Z, et al. Senescence: novel insight into DLX3 mutations leading to enhanced bone formation in Tricho-Dento-Osseous syndrome. Scientific Reports. 2016;6:38680. Disponible en: http://rdcu.be/yKEP

55. Li Y, Han D, Zhang H, Liu H, Wong S, Zhao N, et al. Morphological analyses and a novel de novo DLX3 mutation associated with tricho–dento–osseous syndrome in a Chinese family. European Journal of Oral Sciences. 2015;123(4):228-34.

Artículos más leídos del mismo autor/a