Analysis of the argumentative strategies used by secondary school students in solving linear pattern generalization tasks

Main Article Content

Oriol Pérez Rodríguez
Genaro de Gamboa Rojas
Edelmira Rosa Badillo Jiménez

Abstract

The objective of the work is to compare the justifications generated by secondary school students aged 14 and 15 in tasks of generalization of linear patterns, relating them to the way of formulating the statements. The study analyzes the argumentative strategies used by students when the structure of the statement varies. The written justifications for the tasks of both questionnaires are analyzed and problem-solving profiles of all the students are identified for each task based on the argumentative strategies used. Next, these solver profiles are compared for each student in the two proposed questionnaires. The results show that a part of the students present significant differences in their argumentative strategies that they use to solve the two questionnaires.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Pérez Rodríguez, O. ., de Gamboa Rojas, G., & Badillo Jiménez, E. R. . (2023). Analysis of the argumentative strategies used by secondary school students in solving linear pattern generalization tasks. Praxis, 19(3), 399–420. https://doi.org/10.21676/23897856.5039
Section
Scientific and technological research article

References

Ball, D. L. y Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin, and D. Schifter (Ed). A research companion to principles and standards for school mathematics, (pp. 27-44). National Council of Teachers of Mathematics.

Baloco, C. y López. O. (2002). Ambientes virtuales con metodología de aprendizaje basado en problemas (ABP): Una estrategia didáctica para el fortalecimiento de competencias matemáticas de las herramientas multimedia interactivas para la enseñanza en educacion preescolar. Praxis, 18(2), 324-344. http://dx.doi.org/10.21676/23897856.3919

Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: An essay on the case of proof. ZDM, 40(3), 501–512. https://doi.org/10.1007/s11858-008-0103-2

Callejo, M. L. y Zapatera, A. (2014). Flexibilidad en la resolución de problema de identificación de patrones lineales en estudiantes de educación secundaria. Bolema: Boletim de Educaçao Matemática, 28(48), 64-88. https://doi.org/10.1590/1980-4415v28n48a04

Caviedes, S., De Gamboa, G. y Badillo, E. (2019). Conexiones matemáticas que establecen maestros en formación al resolver tareas de medida y comparación de áreas. Praxis, 15(1), 69-87. http://dx.doi.org/10.21676/23897856.2984

Cohen, L,. Manion, L. & Morrison, K. (2007). Research methods in education. Routledge, Oxon.

Decret 187/2015 de 2015. (2015, 25 de agosto), España. Ordenació dels ensenyaments de l’educació secundaria obligatòria, DOGC No 6945 – 28.8.2015. https://portaljuridic.gencat.cat/eli/es-ct/d/2015/08/25/187

Jeannotte, D. & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1-16. https://doi.org/10.1007/s10649-017-9761-8

Kieran, C., y Filloy, E. (1989). El aprendizaje del álgebra escolar desde una perspectiva psicológica. Enseñanza de las ciencias, 7(3), 229-240. http://hdl.handle.net/11162/169309

Pedemonte, B., & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the ck¢-enriched Toulmin model. The Journal of Mathematical Behavior, 41, 104-122. https://doi.org/10.1007/s10649-010-9275-0

Radford, L., & Peirce, C. S. (2006). Algebraic thinking and the generalization of patterns: a semiotic perspective. In Alatorre, S., Cortina, J.L., Sáiz, M., & Méndez, A. (Ed.), Proceedings of the Twenty Eighth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 2-21). Universidad Pedagógica Nacional.

Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1-19.

https://doi.org/10.1080/14794800903569741 https://www.raco.cat/index.php/REIRE/article/download/131531/181353

Stylianides, G. J. (2008). An analytic framework of reasoning and proving. For the learning of mathematics, 28(1), 9-16.

Toulmin, S. E. (2003). The uses of argument. Cambridge University Press.