Efecto de la capacidad visoespacial en el rendimiento académico de estudiantes de anatomía médica

Contenido principal del artículo

Nicole Caldichoury-Obando
Cristian Araya
Cristian Romo
Alejando Ducassou
Maria F. Porto
Yuliana Flórez
Jorge Herrera-Pino
Daniela Ripoll
Jahaira Escorcia
Roxana Castillo-Acobo
Rildo Bellido-Medina
Cesar E. Castellanos
Carol Saldías
Loida Camargo
Norman López

Resumen

La capacidad visoespacial se asocia con habilidades clínicas en la educación médica, ya que predice el desempeño académico de los estudiantes de anatomía. Objetivo: Determinar si el procesamiento visoespacial genera cambios en la enseñanza de la anatomía médica y predice el desempeño académico en esa asignatura. Método: 140 estudiantes evaluados al inicio de semestre y antes de exámenes finales con el Test de la Figura Compleja de Rey. Se realizaron análisis t de Student para contrastar las diferencias pre y pos-test, d de Cohen para medir el tamaño de efecto y regresión lineal para evaluar la predicción con las notas finales. Resultados: Edad promedio 20.22 años (DE=1.12), media de calificaciones 4.96 (DE=1.20). El 70% de los estudiantes aprobó la asignatura. La prueba t reporta diferencias significativas del TFCR (Evocación de Memoria: t=-17.383; p<0.001; Evocación diferida: t=-16.547, p<0.001) con un tamaño del efecto mediano (d=0.59 y d=0.56), respectivamente. Las puntuaciones obtenidas en el post-test en la tarea de memoria diferida del TFCR, explicaron hasta en un 90% el desempeño académico de los estudiantes. Conclusiones: La memoria diferida del instrumento predijo el rendimiento académico y el aprendizaje de anatomía mejoró el desempeño en la función visoespacial de los estudiantes.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Caldichoury Obando, N., Araya , C. ., Romo, C. . ., Ducassou , A. ., Porto Torres , M. F., Florez Niño , Y. . ., … López Velásquez, N. D. (2022). Efecto de la capacidad visoespacial en el rendimiento académico de estudiantes de anatomía médica. Praxis, 18(2), 364–376. https://doi.org/10.21676/23897856.4716
Sección
Artículo de investigación científica y tecnológica

Citas

Amouzeshi, Z., Changiz, T., Najimi, A., Saberifiroozi, M., Sadeghi, A., Farzanehfar, M., Khoshbaten, M., Mojtahedi, K., Sima, A., Taghvaei, T., & Adibi, P. (2021). Psychomotor abilities in diagnostic upper gastrointestinal endoscopy derived from procedural task analysis techniques and expert review. Journal of Education and Health Promotion, 10(1). https://doi.org/10.4103/JEHP.JEHP_1516_20

Ayala Servín, N., Bogarín Torres, C., Bottrel, A., Duarte Fariña, C., Torales, J., Samudio, M., Barrios, I., & Arce, A. (2016). Emotional intelligence and intelligence quotient as predictor of academic performance in Paraguayan medical students. Year 2015. Memorias Del Instituto de Investigaciones En Ciencias de La Salud, 14(2), 84–91. https://doi.org/10.18004/MEM.IICS/1812-9528/2016.014(02)84-091

Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(5–6), 327–344. https://doi.org/10.1007/BF00287729

Barel, E., & Tzischinsky, O. (2018). Age and Sex Differences in Verbal and Visuospatial Abilities. Advances in Cognitive Psychology, 2(14), 51. https://doi.org/10.5709/ACP-0238-X

Barrett, T. J., & Hegarty, M. (2016). Effects of interface and spatial ability on manipulation of virtual models in a STEM domain. Computers in Human Behavior, 65, 220–231. https://doi.org/10.1016/J.CHB.2016.06.026

Bogomolova, K., Hierck, B. P., van der Hage, J. A., & Hovius, S. E. R. (2019). Anatomy Dissection Course Improves the Initially Lower Levels of Visual-Spatial Abilities of Medical Undergraduates. Anatomical Sciences Education, 1–10. https://doi.org/10.1002/ASE.1913

Bolaño García, M., Cárdenas García, E., & Uribe Miranda, C. (2021). Desarrollo de competencias digitales a partir del uso de vídeos didácticos. Revista Espacios, 42(13), 29–44. https://doi.org/10.48082/espacios-a21v42n13p03

Borsting, E. (1996). Visual Perception and Reading. Mosby.

Buckley, J., Seery, N., & Canty, D. (2018). A Heuristic Framework of Spatial Ability: a Review and Synthesis of Spatial Factor Literature to Support its Translation into STEM Education. Educational Psychology Review, 30(3), 947–972. https://doi.org/10.1007/S10648-018-9432-Z/FIGURES/2

Chabani, E., & Hommel, B. (2014). Effectiveness of visual and verbal prompts in training visuospatial processing skills in school age children. Instructional Science, 42(6), 995–1012. https://doi.org/10.1007/S11251-014-9316-7/FIGURES/5

Chao, C. J., Lin, C. H., & Hsu, S. H. (2014). An assessment of the effects of navigation maps on drivers’ mental workloads. Perceptual and Motor Skills, 118(3), 709–731. https://doi.org/10.2466/22.29.PMS.118K28W4

Flores-Hernández, F., Sánchez-Mendiola, M., & Martínez-González, A. (2016). Modelo de predicción del rendimiento académico de los estudiantes del ciclo básico de la carrera de Medicina a partir de la evaluación del desempeño docente. 21(70), 975–991. http://www.scielo.org.mx/scielo.php?pid=S1405-66662016000300975&script=sci_arttext

Freina, L., Bottino, R., & Ferlino, L. (2018). Visuospatial Abilities Training with Digital Games in a Primary School. International Journal of Serious Games, 5(3), 23–35. https://doi.org/10.17083/IJSG.V5I3.240

Galindo Rojas, E. (2016). Neurobiología de la percepción visual. In Neurobiología de la percepción visual. Universidad del Rosario. https://doi.org/10.12804/TM9789587387483

Galperin, D., Alvarez, M., Heredia, L., Saéz, R., & Milner, A. (2020). Comparación de modelos mentales de estudiantes y docentes sobre las causas del día y la noche, las estaciones y las fases lunares: un análisis a partir de los sistemas de referencia astronómicos. Revista De Enseñanza De La Física, 32, 117–124. https://revistas.unc.edu.ar/index.php/revistaEF/article/view/30973

Gao, Y., Silvennoinen, M., Pesola, A. J., Kainulainen, H., Cronin, N. J., & Finni, T. (2017). Acute Metabolic Response, Energy Expenditure, and EMG Activity in Sitting and Standing. Medicine and Science in Sports and Exercise, 49(9), 1927–1934. https://doi.org/10.1249/MSS.0000000000001305

Georges, C., Cornu, V., & Schiltz, C. (2021). The importance of visuospatial abilities for verbal number skills in preschool: Adding spatial language to the equation. Journal of Experimental Child Psychology, 201, 104971. https://doi.org/10.1016/J.JECP.2020.104971

Grassi, M., Meneghetti, C., Toffalini, E., & Borella, E. (2017). Auditory and cognitive performance in elderly musicians and nonmusicians. PLoS ONE, 12(11). https://doi.org/10.1371/JOURNAL.PONE.0187881

Griesbauer, E.-M., Manley, E., Wiener, J. M., & Spiers, H. J. (2022). London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London. Hippocampus, 32(1), 3–20. https://doi.org/https://doi.org/10.1002/hipo.23395

Guillot, A., Champely, S., Batier, C., Thiriet, P., & Collet, C. (2006). Relationship Between Spatial Abilities, Mental Rotation and Functional Anatomy Learning. Advances in Health Sciences Education 2006 12:4, 12(4), 491–507. https://doi.org/10.1007/S10459-006-9021-7

Harrington, C. M., Dicker, P., Traynor, O., & Kavanagh, D. O. (2018). Visuospatial abilities and fine motor experiences influence acquisition and maintenance of fundamentals of laparoscopic surgery (FLS) task performance. Surgical Endoscopy 2018 32:11, 32(11), 4639–4648. https://doi.org/10.1007/S00464-018-6220-2

Hinze, S. R., Williamson, V. M., Shultz, M. J., Williamson, K. C., Deslongchamps, G., & Rapp, D. N. (2013). When do spatial abilities support student comprehension of STEM visualizations? Cognitive Processing 2013 14:2, 14(2), 129–142. https://doi.org/10.1007/S10339-013-0539-3

Hodgkiss, A., Gilligan, K. A., Tolmie, A. K., Thomas, M. S. C., & Farran, E. K. (2018). Spatial cognition and science achievement: The contribution of intrinsic and extrinsic spatial skills from 7 to 11 years. British Journal of Educational Psychology, 88(4), 675–697. https://doi.org/10.1111/BJEP.12211

Holznecht, C., Schmidt, T., & Gould, J. (2011). The impact of training under different visual-spatial conditions on reverse-alignment laparoscopic skills development. Surgical Endoscopy 2011 26:1, 26(1), 120–123. https://doi.org/10.1007/S00464-011-1836-5

Hoyek, N., Collet, C., Rastello, O., Fargier, P., Thiriet, P., & Guillot, A. (2009). Enhancement of mental rotation abilities and its effect on anatomy learning. Teaching and Learning in Medicine, 21(3), 201–206. https://doi.org/10.1080/10401330903014178

Kalun, P., Dunn, K., Wagner, N., Pulakunta, T., & Sonnadara, R. (2020). Recent evidence on visual-spatial ability in surgical education: A scoping review. Canadian Medical Education Journal, 11(6), e111–e127. https://doi.org/10.36834/CMEJ.69051

Kashihara, K., & Nakahara, Y. (2011). Evaluation of task performance during mentally imaging three-dimensional shapes from plane figures. Perceptual and Motor Skills, 113(1), 188–200. https://doi.org/10.2466/03.04.22.PMS.113.4.188-200

Keehner, M. M., Tendick, F., Meng, M. v., Anwar, H. P., Hegarty, M., Stoller, M. L., & Duh, Q. Y. (2004). Spatial ability, experience, and skill in laparoscopic surgery. The American Journal of Surgery, 188(1), 71–75. https://doi.org/10.1016/J.AMJSURG.2003.12.059

Kiernan, N. A., Manches, A., & Seery, M. K. (2021). The role of visuospatial thinking in students’ predictions of molecular geometry. Chemistry Education Research and Practice, 22(3), 626–639. https://doi.org/10.1039/D0RP00354A

Labranche, L., Wilson, T. D., Terrell, M., & Kulesza, R. J. (2022). Learning in Stereo: The Relationship Between Spatial Ability and 3D Digital Anatomy Models. Anatomical Sciences Education, 15(2), 291–303. https://doi.org/10.1002/ASE.2057

Liesefeld, H. R., & Zimmer, H. D. (2013). Think spatial: The representation in mental rotation is nonvisual. Journal of Experimental Psychology: Learning Memory and Cognition, 39(1), 167–182. https://doi.org/10.1037/A0028904

Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis. Child Development, 56(6), 1479. https://doi.org/10.2307/1130467

Liu, S., Wei, W., Chen, Y., Hugo, P., & Zhao, J. (2021). Visual–Spatial Ability Predicts Academic Achievement Through Arithmetic and Reading Abilities. Frontiers in Psychology, 11, 3652. https://doi.org/https://doi.org/10.3389/fpsyg.2020.591308

López Velásquez, N. D., Coronado López, J., Herrera-Pino, J., Soto-Añari, M., & Ferrel-Ortega, R. (2017). Efecto del Aprendizaje de Morfología en el Procesamiento Visoespacial de Estudiantes Universitarios Chilenos. Revista Interamericana de Psicología/Interamerican Journal of Psychology, 50(3), 441–448. https://doi.org/https://doi.org/10.30849/rip/ijp.v50i3.127

Lufler, R. S., Zumwalt, A. C., Romney, C. A., & Hoagland, T. M. (2011). Effect of visual–spatial ability on medical students’ performance in a gross anatomy course. Anatomical Sciences Education, 5(1), 3–9. https://doi.org/10.1002/ASE.264

Ma, M., Bale, K., & Rea, P. (2012). Constructionist Learning in Anatomy Education. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7528 LNCS, 43–58. https://doi.org/10.1007/978-3-642-33687-4_4

Merchán, M., & Henao, J. (2011). Influencia de la percepción visual en el aprendizaje. Cienc Tecnol Salud Vis Ocul, 9(1). https://ciencia.lasalle.edu.co/svo/vol9/iss1/8

Milner-Bolotin, M., & Nashon, S. M. (2011). The essence of student visual–spatial literacy and higher order thinking skills in undergraduate biology. Protoplasma 2011 249:1, 249(1), 25–30. https://doi.org/10.1007/S00709-011-0346-6

Moreau, D., Clerc, J., Mansy-Dannay, A., & Guerrien, A. (2012). Enhancing Spatial Ability Through Sport Practice. Journal of Individual Differences, 33(2), 83–88. https://doi.org/10.1027/1614-0001/A000075

Nabizadeh, S., Hajian, S., Sheikhan, Z., & Rafiei, F. (2019). Prediction of academic achievement based on learning strategies and outcome expectations among medical students. BMC Medical Education, 19(1), 1–11. https://doi.org/10.1186/S12909-019-1527-9/TABLES/5

Nugent, E., Hseino, H., Boyle, E., Mehigan, B., Ryan, K., Traynor, O., & Neary, P. (2012). Assessment of the role of aptitude in the acquisition of advanced laparoscopic surgical skill sets. International Journal of Colorectal Disease 2012 27:9, 27(9), 1207–1214. https://doi.org/10.1007/S00384-012-1458-Y

Patiño-Oviedo, F. (2019). La rotación mental como herramienta para evaluar la influencia de la formación como fisioterapeuta en las competencias espaciotemporales [Corporación Universitaria Iberoamericana]. http://repositorio.ibero.edu.co/handle/001/910

Peters, M. (2005). Sex differences and the factor of time in solving Vandenberg and Kuse mental rotation problems. Brain and Cognition, 57(2), 176–184. https://doi.org/10.1016/J.BANDC.2004.08.052

Peters, M., & Battista, C. (2008). Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library. Brain and Cognition, 66(3), 260–264. https://doi.org/10.1016/J.BANDC.2007.09.003

Peters, M., Manning, J. T., & Reimers, S. (2007). The Effects of Sex, Sexual Orientation, and Digit Ratio (2D:4D) on Mental Rotation Performance. Archives of Sexual Behavior 2007 36:2, 36(2), 251–260. https://doi.org/10.1007/S10508-006-9166-8

Rabattu, P. Y., Debarnot, U., & Hoyek, N. (2022). Exploring the impact of interactive movement-based anatomy learning in real classroom setting among kinesiology students. Anatomical Sciences Education. https://doi.org/10.1002/ASE.2172

Ramírez-Sanchez, N. A., Vega-Peña, N. V., Domínguez-Torres, L. C., & Sanabria-Quiroga, Á. E. (2018). El entrenamiento mental y los cirujanos: una estrategia de mejoramiento. Iatreia, 31(2), 180–190. https://doi.org/10.17533/UDEA.IATREIA.V31N2A06

Rengier, F., Häfner, M. F., Unterhinninghofen, R., Nawrotzki, R., Kirsch, J., Kauczor, H. U., & Giesel, F. L. (2013). Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability. European Journal of Radiology, 82(8), 1366–1371. https://doi.org/10.1016/J.EJRAD.2013.01.010

Rey, A. (2010). Test de copie et de reproduction de mémoire de figures géométriques complexes. Editions du centre de psychologie appliquée.

Rochford, K. (1985). Spatial learning disabilities and underachievement among university anatomy students. Medical Education, 19(1), 13–26. https://doi.org/10.1111/J.1365-2923.1985.TB01134.X

Rodán González, A. (2019). Entrenamiento visoespacial en estudiantes de educación primaria y secundaria, y su relación con factores cognitivos, emocionales y de experiencia con videojuegos [Universidad Nacional de educación a distancia]. http://e-spacio.uned.es/fez/eserv/tesisuned:ED-Pg-PsiSal-Arodan/RODAN_GONZALEZ_Antonio_Tesis.pdf

Rodríguez-Herrera, R., Losardo, R. J., Binvignat, O., Rodríguez-Herrera, R., Losardo, R. J., & Binvignat, O. (2019). La Anatomía Humana como Disciplina Indispensable en la Seguridad de los Pacientes. International Journal of Morphology, 37(1), 241–250. https://doi.org/10.4067/S0717-95022019000100241

Rojas Cordero, C. (2019). Relación de la técnica quirúrgica con el conocimiento procedimental de cirugía bucal en estudiantes de odontología [Universidad Nacional Daniel Alcides Carrión]. http://repositorio.undac.edu.pe/handle/undac/1848

Ruíz-Vargas, J. M. (1959). Manual de psicología de la memoria. Síntesis.

Shafqat, A., Ferguson, E., Thanawala, V., Bedforth, N. M., Hardman, J. G., & McCahon, R. A. (2015). Visuospatial Ability as a Predictor of Novice Performance in Ultrasound-guided Regional Anesthesia. Anesthesiology, 123(5), 1188–1197. https://doi.org/10.1097/ALN.0000000000000870

Spormann, C., Pérez, C., Fasce, E., Ortega, J., Bastías, N., Bustamante, C., & Ibáñez, P. (2015). Predictores afectivos y académicos del aprendizaje autodirigido en estudiantes de medicina. Revista Médica de Chile, 143(3), 374–382. https://doi.org/10.4067/S0034-98872015000300013

Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research: A simplified methodology. Work-Learning Research, 1(9).

Trés, E. S., & Dozzi Brucki, S. M. (2014). Visuospatial processing A review from basic to current concepts. Dement Neuropsychol, 8(2), 175–181.

Vázquez, S., & Noriega, M. (2011). Razonamiento espacial y rendimiento académico. Interdisciplinaria, 28, 145–158. https://doi.org/https://doi.org/10.30849/rip/ijp.v50i3.127

Vélez van Meerbeke, A., & Roa González, C. N. (2005). Factores asociados al rendimiento académico en estudiantes de medicina. Educación Médica, 8(2), 24–32. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1575-18132005000200005

Vorstenbosch, M. A. T. M., Klaassen, T. P. F. M., Donders, A. R. T., Kooloos, J. G. M., Bolhuis, S. M., & Laan, R. F. J. M. (2013). Learning anatomy enhances spatial ability. Anatomical Sciences Education, 6(4), 257–262. https://doi.org/10.1002/ASE.1346

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial Ability for STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/A0016127

White, C. B., Dey, E. L., & Fantone, J. C. (2009). Analysis of factors that predict clinical performance in medical school. Advances in Health Sciences Education, 14(4), 455–464. https://doi.org/10.1007/S10459-007-9088-9/FIGURES/2

Zúñiga, D., Mena, B., Oliva, R., Pedrals, N., Padilla, O., & Bitran, M. (2009). Modelos de predicción del rendimiento académico de los estudiantes de medicina en el ciclo básico y preclínico: Un estudio longitudinal. Revista Médica de Chile, 137(10), 1291–1300. https://doi.org/10.4067/S0034-98872009001000003

Artículos más leídos del mismo autor/a