Efecto del uso de estimuladores de crecimiento sobre los indicadores de desempeño y aspectos morfoeritrocitarios evaluados en juveniles de Centropomus undecimalis (Bloch, 1792)

Contenido principal del artículo

Saeko Gaitán
Zamir Benítez-Polo
Andres Pulgar-Baccaa
Germán Blanco-Cervantes
Danny López-Patiño

Resumen

El presente estudio proporcionó evidencias de los efectos del tratamiento con vitamina C y probióticos sobre el desempeño productivo y el perfil hematológico en juveniles de róbalo (Centropomus undecimalis), una especie emblemática del trópico americano que cuenta con gran valor económico en el mercado. En los ensayos se utilizaron 90 especímenes de 17,8±0,5 cm de longitud total y 42,5±3,0 g de peso. Se evaluaron tres tratamientos (vitamina C, probiótico y control) con tres réplicas, distribuyendo al azar 10 peces por tanque. La calidad del agua se mantuvo en condiciones controladas. Se estimaron indicadores del desempeño y aspectos hematológicos para cada tratamiento. El comportamiento eritrocitario, particularmente el tamaño de las células y el factor de forma, sugiere un beneficio por el suplemento de las dietas con probióticos y vitamina C. No obstante, la morfología del núcleo y la longitud y el ancho de la célula, cuando se utiliza vitamina C, indica una disminución del espacio citoplasmático, que influye en el volumen corpuscular medio y la concentración media de hemoglobina corpuscular, lo cual afecta el transporte y, consecuentemente, el oxígeno en la sangre. Después de los 63 días de experimentación, los peces suplementados con el probiótico presentaron mejores respuestas en los índices de desempeño zootécnicos y respuesta inmune que los del grupo control y los suplementados con vitamina C.
 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Gaitán, S., Benítez-Polo, Z. ., Pulgar-Baccaa , A. ., Blanco-Cervantes, G. ., & López-Patiño, D. . (2024). Efecto del uso de estimuladores de crecimiento sobre los indicadores de desempeño y aspectos morfoeritrocitarios evaluados en juveniles de Centropomus undecimalis (Bloch, 1792). Intropica, Preprint. https://doi.org/10.21676/23897864.5890
Sección
Artículo de investigación científica y tecnológica

Citas

Affonso, E. G., Silva, E. C., Tavares-Dias, M., De Menezes, G. C., De Carvalho, C. S., Nunes E. S., Ituassú, D. R., Roubach, R., Ono, E. A., Fim, J. D. y Marcon, J. L. (2007). Effect of high levels of dietary vitamin C on the blood responses of matrinxã (Brycon amazonicus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(2), 383-388. https://doi.org/10.1016/j.cbpa.2007.01.004.

Ahmed, I., Balestrieri, E., Tudosa, I. y Lamonaca, F. (2021). Morphometric measurements of blood cell. Measurement: Sensors, 18, 100294. https://doi.org/10.1016/j.measen.2021.100294.

Ai, Q., Mai, K., Zhang, C., Xu, W., Duan, Q., Tan, B. y Liufu, Z. (2004). Effects of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicus. Aquaculture, 242(1-4), 489-500. https://doi.org/10.1016/j.aquaculture.2004.08.016.

Ai, Q., Mai, K., Tan, B., Xu, W., Zhang, W., Ma, H. y Liufu, Z. (2006). Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture, 261(1), 327-336. https://doi.org/10.1016/j.aquaculture.2006.07.027.

Al‐Dohail, M. A., Hashim, R. y Aliyu‐Paiko, M. (2009). Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822)

fingerling. Aquaculture Research, 40(14), 1642-1652. https://doi.org/10.1111/j.1365-2109.2009.02265.x.

Álvarez-Lajonchère, L. y Tsuzuki, M. (2008). A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquaculture Research, 39(7), 684-700. https://doi.org/10.1111/j.1365-2109.2008.01921.x.

Azarin, H., Aramli, M. S., Imanpour, M. R. y Rajabpour, M. (2015). Effect of a Probiotic Containing Bacillus licheniformis and Bacillus subtilis and Ferroin Solution on Growth Performance, Body Composition and Haematological Parameters in Kutum (Rutilus frisii kutum) Fry. Probiotics & Antimicrobial Proteins, 7, 31-37. https://doi.org/10.1007/s12602-014-9180-4.

Barbosa, M. C., Jatobá, A., Vieira, F. D. N., Silva, B. C., Mourino, J. L. P., Andreatta, E. R., Seiffert, W. Q. y Cerqueira, V. R. (2011). Cultivation of juvenile fat snook (Centropomus parallelus Poey, 1860) fed probiotic in laboratory conditions. Brazilian Archives

of Biology and Technology, 54(4), 795-801. https://doi.org/10.1590/S1516-89132011000400020.

Barros, M. M., Falcon, D. R., De Oliveira, O. R., Pezzato, L. E., Fernandes, A. C., Guimarães, I. G., Fernandes, A., Padovani, C. R. y Pereira, M. M. (2014). Non-specific immune parameters and physiological response of Nile tilapia fed ß-glucan and vitamin C for different periods and submitted to stress and bacterial challenge. Fish and Shellfish Immunology, 39(2), 188-195. https://doi.org/10.1016/j.fsi.2014.05.004.

Barton, B. A. (2002) Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids. Integrative and Comparative Biology, 42(3), 517-525. https://doi.org/10.1093/icb/42.3.517.

Bernet, D., Schmidt, H., Wahli, T. y Burkhardt-Holm, P. (2001). Effluent from a Sewage Treatment Works Causes Changes in

Serum Chemistry of Brown Trout (Salmo trutta L.). Ecotoxicology and Environmental Safety, 48(2), 140-147. https://doi.org/10.1006/eesa.2000.2012.

Blain, S., Tucker, J. W., Neidig, C. L., Vermeer, G. K., Cooper, V. R., Jarrell, J. L. y Sennett, D. G. (1998). Bacterial management

strategies for stock enhancement of warmwater marine fish: a case study with common snook (Centropomus undecimalis). Bulletin of Marine Science, 62(2), 573-588.

Blewett, D. A., Stevens, P. W., Champeau, T. R. y Taylor, R. G. (2009). Use of rivers by common snook Centropomus undecimalis

in southwest Florida: a first step in addressing the overwintering paradigm. Florida Scientist, 72(4), 310-324.

Bricknell, I. y Dalmo, R. A. (2005). The use of immunostimulants in fish larval aquaculture. Fish & Shellfish Immunology, 19(5), 457-472. https://doi.org/10.1016/j.fsi.2005.03.008.

Carnevali, O., De Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S. y Cresci, A. (2006). Growth improvement by probiotic in

European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1-4), 430-438. https://doi.org/10.1016/j.aquaculture.2006.04.025.

Casanovas, P., Walker, S. P., Johnston, H., Johnston, C. y Symonds, J. E. (2021). Comparative assessment of blood biochemistry

and haematology normal ranges between Chinook salmon (Oncorhynchus tshawytscha) from seawater and freshwater

farms. Aquaculture, 537, 736464. https://doi.org/10.1016/j.aquaculture.2021.736464.

Contreras-Sánchez, W. M., Contreras-García, M. J., McDonald-Vera, A., Hernández-Vidal, U., Cruz-Rosado, L. y Martínez-García, R. (2015). Manual para la producción de robalo blanco (Centropomus undecimalis) en cautiverio (2.ª ed. Colección José N. Rovirosa. Biodiversidad, Desarrollo sustentable y Trópico Húmedo). Universidad Juárez Autónoma de Tabasco.

Costa, J. y De Mello, G. L. (2015). Crescimento alométrico positivo entre características biométricas de juvenis de robalo-flecha (Centropomus undecimalis Bloch, 1972) cultivados. Arquivos De Ciências Veterinárias E Zoologia Da UNIPAR, 18(1):21-26.

Cruz-Botto, S., Roca-Lanao, B., Gaitán-Ibarra, S., Chaparro-Muñoz, N. y Villamizar, N. (2018). Natural vs laboratory conditions on

the reproductive biology of common snook Centropomus undecimalis (Bloch, 1792). Aquaculture, 482, 9-16. https://doi.org/10.1016/j.aquaculture.2017.09.013.

Dawood, M. A., Koshio, S. y Esteban, M. Á. (2017). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture, 10(4), 950-974. https://doi.org/10.1111/raq.12209.

De Jesus, E. C., Arpini, C. M., Martins, J. D. L., Da Silva, C. B. B., Castheloge, V. D., Clemente‐Carvalho, R. B. G. y Gomes, L. C. (2016). Isolation and evaluation of autochthonous Bacillus subtilis strains as probiotics for fat snook (Centropomus parallelus Poey, 1860). Journal of Applied Ichthyology, 32(4), 682-686. https://doi.org/10.1111/jai.13080.

Duarte, L. O., Manjarrés-Martínez, L., De la Hoz, J., Cuello, F. y Altamar, J. (2018). Estado de los principales recursos pesqueros

de Colombia. Análisis de indicadores basados en tasas de captura, tallas de captura y madurez. AUNAP; Universidad del Magdalena.

Eissa, E. S. H., Baghdady, E. S., Gaafar, A. Y., El-Badawi, A. A., Bazina, W. K., Abd Al-Kareem, O. M. y Abd El-Hamed, N. N. (2022). Assessing the Influence of Dietary Pediococcus acidilactici Probiotic Supplementation in the Feed of European Sea Bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on Farm Water Quality, Growth, Feed Utilization, Survival Rate, Body Composition, Blood Biochemical Parameters, and Intestinal Histology. Aquaculture Nutrition, 2022(1), 1-11. https://doi.org/10.1155/2022/5841220.

El-Saadony, M. T., Alagawany, M., Patra, A. K., Kar, I., Tiwari, R., Dawood, M. A., Dhama, K. y Abdel-Latif, H. M. (2021).

The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology, 117, 36-52. https://doi.org/10.1016/j.fsi.2021.07.007.

Eshak, M. G., Khalil, W. K., Hegazy, E. M., Farag, I. M., Fadel, M. y Stino, F. K. (2010). Effect of yeast (Saccharomyces cerevisiae)

on reduction of aflatoxicosis, enhancement of growth performance and expression of neural and gonadal genes in Japanese quail. Journal of American Science, 6(12).

Farrell, A. P. (2011). Cellular Composition of the Blood. En A. P. Farrell (ed.), Encyclopedia of Fish Physiology: From Genome to Environment (pp. 984-991). Academic Press.

Fazio, F. (2019). Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture, 500, 237-242. https://doi.org/10.1016/j.aquaculture.2018.10.030.

Froese, R. (2006). Cube law, condition factor and weight–length relationships: history, meta‐analysis and recommendations.

Journal of Applied Ichthyology, 22(4), 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

Froehlich, H., Gentry, R. y Halpern, B. (2017). Conservation aquaculture: Shifting the narrative and paradigm of aquaculture's role in resource management. Biological Conservation, 215, 162-168. https://doi.org/10.1016/j.biocon.2017.09.012

Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. y Cao, L. (2018). Feed conversion efficiency in aquaculture: do we measure it correctly? Environmental Research Letters, 13(2), 024017. https://doi.org/10.1088/1748-9326/aaa273

Gaitán, S., Villamizar, N. y Cotes L. (2023). Evaluation of the growth of juveniles of Centropomus undecimalis using diets with replacement of fishmeal by soybean meal. Latin American & Caribbean Aquaculture 2023.

García, C. B., Duarte, L. O., Altamar, J. y Manjarrés, L. M. (2007). Demersal fish density in the upwelling ecosystem off

Colombia, Caribbean Sea: Historic outlook. Fisheries Research, 85(1-2), 68-73.

Gracia-López, V., Rosas-Vázquez, C. y Brito-Pérez, R. (2006). Effects of salinity on physiological conditions in juvenile common

snook Centropomus undecimalis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145(3), 340-345. https://doi.org/10.1016/j.cbpa.2006.07.008

Grijalba-Bendeck, M., Leal-Flórez, J., Bolaños-Cubillos, N. y Acero, A. (2017). Centropomus undecimalis (Bloch, 1792). En V. Chasqui, A. Polanco, A. Acero, P. Mejía-Falla, A. Navia, L. Zapata y J. Caldas (eds.), Libro rojo de peces marinos de Colombia (pp. 222-225). Instituto de Investigaciones Marinas y Costeras Invemar; Ministerio de Ambiente y Desarrollo Sostenible.

Hauville, M., Zambonino-Infante, J., Migaud, H., Bell, J. G. B. y Main, K. (2013). Effects of probiotics on Pompano (Trachinotus carolinus), Common snook (Centropomus undecimalis), and Red drum (Sciaenops ocellatus) larvae. Communications in Agricultural and Applied Biological Sciences, 78, 180-183.

Hidalgo, M. C., Skalli, A., Abellán, E., Arizcun, M. y Cardenete, G. (2006). Dietary intake of probiotics and maslinic acid in

juvenile dentex (Dentex dentex L.): effects on growth performance, survival and liver proteolytic activities. Aquaculture Nutrition, 12(4), 256-266. https://doi.org/10.1111/j.1365-2095.2006.00408.x

Kamgar, M. y Ghane, M. (2014). Studies on Bacillus subtilis, as potential probiotics, on the hematological and biochemical parameters of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Applied and Environmental Microbiology, 2(5), 203-207. https://pubs.sciepub.com/jaem/2/5/1/index.html#

Lemos, L. S., Angarica, L. M., Hauser-Davis, R. A. y Quinete, N. (2023) Cortisol as a Stress Indicator in Fish: Sampling Methods, Analytical Techniques, and Organic Pollutant Exposure Assessments. International Journal of Environmental Research and Public Health, 20(13), 6237. https://doi.org/10.3390/ijerph20136237

Lim, L.C., Dhert, P., Chew, W.Y., Dermaux, V., Nelis, H. y Sorgeloos, P. (2002). Enhancement of Stress Resistance of the Guppy Poecilia reticulata through Feeding with Vitamin C Supplement. Journal of the World Aquaculture Society, 33(1), 32-40. https://doi.org/10.1111/j.1749-7345.2002.tb00475.x

Lira, A. S., Frédou F. L., Viana, A. P., Eduardo, L. N. y Frédou, T. (2017). Feeding ecology of Centropomus undecimalis (Bloch, 1792) and Centropomus parallelus (Poey, 1860) in two tropical estuaries in Northeastern Brazil. Pan-American Journal of Aquatic Sciences, 12(2), 123-135.

Luc, D. M., Masengesho, B. y Le, M. H. (2021). Effects of vitamin C supplementation on growth performance and immune responses of juvenile Waigieu seaperch (Psammoperca waigiensis). International Journal of Fisheries and Aquatic Studies, 9(3), 126-130. https://doi.org/10.22271/fish.2021.v9.i3b.2497

Martínez, P., Ibáñez, A., Monroy, O. y Ramírez-Saad, H. (2012). Use of Probiotics in Aquaculture. International Scholarly

Research Notices Microbiology, 2012(2). https://pubmed.ncbi.nlm.nih.gov/23762761/

Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T., Bøgwald, J., Castex, M. y Ringø, E. (2010). The current status

and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2), 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007

Michael, S. E., Abarike, E. D y Cai, J. (2019). A Review on the Probiotic Effects on Haematological Parameters in Fish. Journal of Fisheries Sciences, 13(3), 25-31.

Muller, R. y Taylor, R., (2006). The 2006 Stock assessment update of Common snook, Centropomus undecimalis. Florida Marine Research Institute.

Najiah, M., Nadirah, M., Marina, H., Lee, S. W. y Nazaha, W. H. (2008). Quantitative Comparisons of Erythrocyte Morphology in Healthy Freshwater Fish Species from Malaysia. Research Journal of Fisheries and Hydrobiology, 3(1), 32-35.

Nargesi, A. E., Falahatkar, B. y Sajjadi, M. M. (2020). Dietary supplementation of probiotics and influence on feed efficiency, growth parameters and reproductive performance in female rainbow trout (Oncorhynchus mykiss) broodstock. Aquaculture Nutrition, 26(1), 98-108. https://doi.org/10.1111/anu.12970

Nascimento, I., Santos, J., Souza, J., Neta, R. y De Almeida, Z. (2021). Food and Reproductive Bioecology as a subsidy for the cultivation of the fish Centropomus undecimalis (Teleostei: Centropomidae) in Brazil: A Systematic Review. Research, Society and Development, 10(16). https://doi.org/10.33448/rsd-v10i16.23893

Noffs, A. P., Tachibana, L., Santos, A. A. y Ranzani-Paiva, M. J. T. (2015). Common snook fed in alternate and continuous

regimens with diet supplemented with Bacillus subtilis probiotic. Pesquisa Agropecuária Brasileira, 50(04), 267-272. https://doi.org/10.1590/S0100-204X2015000400001

Noro, M. y Wittwer, F. (2012). Hematología de salmonídeos. Master Print.

Osman, A. G. M., AbouelFadl, K. Y., Abdelreheem, A. M. A., Mahmoud, U. M., Kloas, W. y Moustafa, M. A. (2018) Blood Biomarkers in Nile tilapia Oreochromis niloticus niloticus and African Catfish Clarias gariepinus to Evaluate Water Quality of the River Nile. Journal of Fisheries Sciences.com, 12(1), 1-15. https://doi.org/10.21767/1307-234X.1000141

Peng, S. M., Shi, Z. H., Fei, Y., Gao, Q. X., Sun, P. y Wang, J.G. (2013). Effect of high-dose vitamin C supplementation on growth, tissue ascorbic acid concentrations and physiological response to transportation stress in juvenile silver pomfret, Pampus argenteus. Journal of Applied Ichthyology, 29(6), 1337-1341. https://doi.org/10.1111/jai.12250

Perera-García, M, Mendoza-Carranza, M., Contreras-Sánchez, W., Huerta-Ortíz, M. y Pérez-Sánchez, E. (2011). Reproductive biology of common snook Centropomus undecimalis (Perciformes: Centropomidae) in two tropical habitats. Revista de Biología Tropical, 59(2), 669-681.

Peterson, M. S., Brockmeyer, R. E. y Scheidt, D. M. (1991). Hypoxia-induced changes in vertical position and activity in juvenile snook, Centropomus undecimalis: its potential role in survival. Florida Scientist, 54(3-4), 173-178.

Phromkunthong, W., Boonyaratpalin, M., Phimonjinda, T. y Storch, V. (1994). Use of ascorbyl‐2‐monophosphate‐magnesium as a dietary source of ascorbic acid for sea bass, Lates calcarifer (Bloch) (Centropomidae). Aquaculture Research, 25(9), 955-957. https://doi.org/10.1111/j.1365-2109.1994.tb01357.x

Polonía, C., Gaitán, S., Chaparro-Muñoz, y Villamizar, N. (2017a). Captura, transporte y aclimatación de juveniles y adultos de róbalo Centropomus undecimalis (Bloch, 1792). Intropica, 12(1), 61-64. https://doi.org/10.21676/23897864.2035

Polonía, C., Gaitán, S., Chaparro-Muñoz y Villamizar, N. (2017b). Effect of three diets in the experimental culture of the common snook (Centropomus undecimalis Bloch, 1792). Revista MVZ Córdoba, 22(3), 6287-6295. https://doi.org/10.21897/rmvz.1133

Rahman, M. y Baek, H. J. (2019). Evaluation of Erythrocyte Morphometric Indices in Juvenile Red Spotted Grouper, Epinephelus akaara under Elevated Water Temperature. Development & Reproduction, 23(4), 345-353. https://doi.org/10.12717/DR.2019.23.4.345

Rengpipat, S., Rueangruklikhit, T. y Piyatiratitivorakul, S. (2008). Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer. Aquaculture Research, 39(2), 134-143. https://doi.org/10.1111/j.1365-2109.2007.01864.x

Robertson, D., Peña, E., Posada, J., Claro, R. y Estape, C. (2023). Peces Costeros del Gran Caribe: Sistema de Información en Línea. Version 3.0. Instituto Smithsonian de Investigaciones Tropicales.

Rodríguez, S., Ibáñez, A. y Mantilla, N. (2016). La pesca ilegal marina en Colombia. Procuraduría General de la Nación; Fundación MarViva.

Ross, L., Martínez, C. y Morales, E. (2008). Developing native fish species for aquaculture: the interacting demands of biodiversity, sustainable aquaculture and livelihoods. Aquaculture Research, 39(7), 675-683. https://doi.org/10.1111/j.1365-2109.2008.01920.x

Ruas, C. B. G., Carvalho, C. D., De Araújo, H. S. S., Espíndola, E. L. G. y Fernandes, M. N. (2008). Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicology and Environmental Safety, 71(1), 86-93.

Sahoo, P. K. y Mukherjee, S. C. (2003). Immunomodulation by dietary vitamin C in healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita). Comparative Immunology, Microbiology and Infectious Diseases, 26(1), 65-76. https://doi.org/10.1016/S0147-9571(01)00038-8

Schneider, C. A., Rasband, W. S. y Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089

Silvão, C.F. y Nunes, A. J. P. (2017). Effect of dietary amino acid composition from proteins alternative to fishmeal on the growth of juveniles of the common snook, Centropomus undecimalis. Revista Brasileira de Zootecnia, 46(7), 569-575. https://doi.org/10.1590/S1806-92902017000700003

Souza-Filho, J. J. D. y Cerqueira, V. R. (2003). Influência da densidade de estocagem no cultivo de juvenis de robalo-flecha mantidos em laboratório. Pesquisa Agropecuária Brasileira, 38(11), 1317-1322. https://doi.org/10.1590/S0100-204X2003001100010

Taherpour, M., Roomiani, L., Islami, H. R. y Mehrgan, M. S. (2023). Effect of dietary butyric acid, Bacillus licheniformis (probiotic), and their combination on hemato-biochemical indices, antioxidant enzymes, immunological parameters, and growth performance of Rainbow trout (Oncorhynchus mykiss). Aquaculture Reports, 30, 101534.

Tarnecki, A. M., Wafapoor, M., Phillips, R. N. y Rhody, N. R. (2019). Benefits of a Bacillus probiotic to larval fish survival and

transport stress resistance. Scientific Reports, 9(1), 4892. https://doi.org/10.1038/s41598-019-39316-w

Tavares-Dias, M., Melo, J. F. B., Moraes, G. y Moraes, F. R. D. (2002). Características hematológicas de teleósteos brasileiros: IV. Variáveis do jundiá Rhamdia quelen (Pimelodidae). Ciência Rural, 32(4), 693-698. https://doi.org/10.1590/S0103-84782002000400024

Trichet, V. V., Santigosa, E., Cochin, E. y Gabaudan, J. (2015). The Effect of Vitamin C on Fish Health. En C. S. Lee, C. Lim, D. M.

Gatlin y C. D. Webster (eds.), Dietary Nutrients, Additives, and Fish Health (pp. 151-171). Wiley-Blackwell. https://doi.org/10.1002/9781119005568

Torrissen, O., Olsen, R. E., Toresen, R., Hemre, G. I., Tacon, A. G., Asche, F., Hardy, R. W. y Lall, S. (2011). Atlantic Salmon (Salmo salar): The “Super-Chicken” of the Sea? Reviews in Fisheries Science, 19(3), 257-278. https://doi.org/10.1080/10641262.2011.597890

Tucker, J. W. (1987). Snook and Tarpon Snook Culture and Preliminary Evaluation for Commercial Farming. The Progressive Fish-Culturist, 49(1), 49-57.

Vázquez, G. R. y Guerrero, G. A. (2007). Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue and Cell, 39(3), 151-160. https://doi.org/10.1016/j.tice.2007.02.004

Villamizar, N., De Luque, A. y Gaitán‐Ibarra, S. (2021). Evaluation of eugenol as a sedative for the transportation of common snook Centropomus undecimalis (Bloch, 1792). Aquaculture Research, 52(11), 5898-5902. https://doi.org/10.1111/are.15400

Wang, X. J., Kim, K. W., Bai, S. C., Huh, M. D. y Cho, B. Y. (2003). Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture, 215(1-4), 21-36. https://doi.org/10.1016/S0044-8486(02)00042-X

Yang, D. X., Yang, H., Cao, Y. C., Jiang, M., Zheng, J. y Peng, B. (2021). Succinate Promotes Phagocytosis of Monocytes/Macrophages in Teleost Fish. Frontiers in Molecular Biosciences, 8, 644957. https://doi.org/10.3389/fmolb.2021.644957

Zatán, A. E., Castillo, D., Castañeda, A. E., Feria, M. A., Toledo, O. E., Aguilar, J. L., Cueva M. D. y Motte, E. (2020). Characterization of

the intestinal microbiota in snook (Centropomus sp.) and isolation of potential probiotic bacteria. Revista de

Investigaciones Veterinarias del Perú (RIVEP), 31(3).

Zhang, G., Wang, S., Chen, C., Ma, Y., Xie, D., Wang, Y., Sun, L., You C. y Li, Y. (2019). Effects of dietary vitamin C on growth, flesh quality and antioxidant capacity of juvenile golden pompano Trachinotus ovatus. Aquaculture Research, 50(10), 2856-2866. https://doi.org/10.1111/are.14239