Intropica
Uso del selenio en organismo acuáticos. Una revisión
pdf
XML

Palabras clave

minerales
selenoproteínas
genes
antioxidantes
peces
nutrición

Cómo citar

Hoya-Flórez, J. ., Estrada-Posada , A., & Yepes Blandón, J. A. (2022). Uso del selenio en organismo acuáticos. Una revisión. Intropica, 17(1), 97–113. Recuperado a partir de https://umapp002.unimagdalena.edu.co/index.php/intropica/article/view/4546

Resumen

Los nutrientes presentes en el alimento, son de vital importancia para los procesos biológicos en los animales, de esta manera la selección de los ingredientes que conforman la dieta, son esenciales para determinar la inclusión apropiada. Estos nutrientes se dividen en dos grupos macronutrientes que se requieren en grandes cantidades, y proporcionan la mayor parte de energía que necesita un organismo, entre los cuales se encuentran proteínas, lípidos y carbohidratos y los micronutrientes requeridos en menor cantidad, utilizados para regeneración de tejidos y la regulación de procesos corporales, como las vitaminas y los minerales. Estos últimos, garantizan un buen desarrollo de las funciones fisiológicas de los organismos y son necesarios para el metabolismo, generando un fortalecimiento del sistema inmunitario y prevención de enfermedades. Entre los minerales con marcado interés en la acuicultura se encuentra el selenio (Se), mineral traza, que se encuentra en forma de compuestos inorgánicos como selenito y selenato, o compuestos orgánicos en forma de seleno-aminoácidos tales como seleno-cisteína y seleno-metionina. La importancia biológica del selenio radica en su incorporación a moléculas llamadas selenoproteínas, las cuales tienen diferentes funciones tales como; homeostasis de los organismos, (tiorredoxina y del glutatión), en el metabolismo de hormonas tiroideas, (tironina deyodinasa), maduración de espermatozoides y antioxidantes (glutatión peroxidasa), funciones musculares (selenoproteina N), entre otras. De las diferentes selenoproteínas que existen, la mayor parte de ellas se conservan en peces. En los sistemas de acuicultura se ha venido implementando su incorporación en la dieta, con resultados óptimos en los parámetros zootécnicos, en el fortalecimiento inmunológico, y en la expresión de genes. Esta revisión muestra la importancia de Se en peces, destacándose estudios que evalúan los efectos de suplementar dietas con Se para la alimentación de animales acuáticos en cautiverio y la necesidad de determinar requerimientos especie-específicos.
pdf
XML

Citas

Abdel-Tawwab, M. y Wafeek, M. 2010. Response of Nile Tilapia, Oreochromis niloticus (L.) to Environmental Cadmium Toxicity During Organic Selenium Supplementation. Journal of the World Aquaculture Society 41(1): 106-114. Doi: https://doi.org/10.1111/j.1749-7345.2009.00317.x.

Abdel-Tawwab, M., Mousa, M. A.A. y Abbass, F.E. 2007. Growth performance and physiological response of African catfish, Clarias gariepinus (B.) organic selenium prior to the exposure to environmental copper toxicity. Aquaculture 72(1-4): 335-345. Doi: https://doi.org/10.1016/j.aquaculture.2007.09.004.

Ahsan, U., Kamran, Z., Raza, I., Ahmad, S., Babar, W., Riaz, M. H. y Iqbal, Z. (2014). Role of selenium in male reproduction -A review. Animal Reproduction Science 146(1-2): 55-62. Doi: https://doi:10.1016/j.anireprosci.2014.01.009.

Álvarez Fernández, G., Bustos Jaimes, I., Castañeda Patlán, C., Guevara Fonseca, J., Romero Álvarez, I. y Vázquez Meza, H. 2010. Mensaje Bioquímico. Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. México.

Ashouri, S., Keyvanshokooh, S., Salati, A. P., Johari, S. A. y Pasha-Zanoosi, H. 2015. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446: 25-29. https://doi:10.1016/j.aquaculture.2015.04.021.

Bianco, A. C., Salvatore, D., Gereben, B., Berry, M.J., y Larsen, P. R. 2002. Biochemistry, Cellular and Molecular Biology, and Physiological Roles of the Iodothyronine Selenodeiodinases. Endocrine Reviews 23(1): 38–89. https://doi.org/10.1210/edrv.23.1.0455.

Bondad-Reantaso, M. 2007. Assessment of freshwater fish seed resources for sustainable aquaculture. Fisheries Technical Paper. No. 501. Food and Agriculture Organization of the United Nations FAO. Rome.

Burk, R. F. y Hill, K.E. 2015. Regulation of Selenium Metabolism and Transport. Annual Review of Nutrition 35(1): 109–134. Doi: https://doi:10.1146/annurev-nutr-071714-034250.

Carrillo-Nieto, O., Domínguez-Vara, I.A., Huerta-Bravo, M., Jaramillo-Escutia, G., Díaz-Zarco, S., Vázquez-Armijo, J.F., Pescador-Salas, N. y Revilla-Vázquez, A. 2018. Actividad de GSX-Px, concentración de selenio y calidad del eyaculado en sementales ovinos suplementados con selenio durante la época reproductiva. Agrociencia 52(6): 827-839.

Cerny, K.L., Anderson, L., Burris, W.R., Rhoads, M., Matthews, J. C. y Bridges, P.J. 2016. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology 85(5): 800-806. https://doi:10.1016/j.theriogenology.2015.10.022.

Cerny, K.L., Anderson, L., Burris, W.R., Rhoads, M., Matthews, J.C. y Bridges, P.J. 2016. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology 85(5): 800-806. Doi: https://10.1016/j.theriogenology.2015.10.022.

Chambers, I., Frampton, J., Goldfarb, P., Affara, N., McBain, W. y Harrison, P.R. 1986. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the “termination” codon, TGA. The EMBO Journal 5(6): 1221-1227. https://doi:10.1002/j.1460-2075.1986.tb04350.x

Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I. y Mylonas, C.C. 2010. Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture 307(1-2): 65-70. Doi: https://doi:10.1016/j.aquaculture.2010.07.002.

Chen, J., Han, J. H., Guan, W. T., Chen, F., Wang, C. X., Zhang, Y. Z. y Lin, G. 2016. Selenium and vitamin E in sow diets: II. Effect on selenium status and antioxidant status of the progeny. Animal Feed Science and Technology 221: 101-110. Doi: https://10.1016/j.anifeedsci.2016.08.021.

Chen, J., Zhang, F., Guan, W., Song, H., Tian, M., Cheng, L., Zhang, Y. (2019). Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. Journal of Trace Elements in Medicine and Biology 52: 89-99. https://doi:10.1016/j.jtemb.2018.11.010.

Covington, S.M., Naddy, R.B., Prouty, A.L., Werner, S.A. y Lewis, M.D. 2018. Effects of in situ selenium exposure and maternal transfer on survival and deformities of brown trout (Salmo trutta) fry. Environmental Toxicology and Chemistry 37(5): 1396–1408. Doi: https://doi:10.1002/etc.4086.

De Riu, N., Lee, J.W., Huang, S.S.Y., Moniello, G. y Hung, S.S.O. 2014. Effect of dietary selenomethionine on growth performance, tissue burden, and histopathology in green and white sturgeon. Aquatic Toxicology 148: 65–73. Doi: https://doi:10.1016/j.aquatox.2013.12.

Donascimiento, C., Cárdenas-Bautista, J.S., Acosta, K.G.B., González-Alvarado, A. y Medina, C.A. 2016. Illustrated and online catalog of type specimens of freshwater fishes in the colección de peces dulceacuícolas of Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt (IAVH-P), Colombia. Zootaxa 4171(3): 401. Doi: https://doi:10.11646/zootaxa.4171.3.1.

Duntas, L.H. y Benvenga, S. 2015. Selenium: an element for life. Endocrine 48(3): 756-775. Doi: https://10.1007/s12020-014-0477-6.

Durigon, E.G., Kunz, D.F., Peixoto, N.C., Uczay, J. y Lazzari, R. 2018. Diet selenium improves the antioxidant defense system of juveniles Nile tilapia (Oreochromis niloticus L.). Brazilian Journal of Biology. Doi: https://10.1590/1519-6984.187760.

Elia, A.C., Prearo, M., Pacini, N., Dörr, A.J. M. y Abete, M.C. 2011. Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicology and Environmental Safety 74(2): 166-173. https://doi:10.1016/j.ecoenv.2010.04.006.

Escobar, M.D., R.P., Machado‐Allison, A., Farias, I.P. y Hrbek, T. 2019. A new species of Piaractus (Characiformes: Serrasalmidae) from the Orinoco Basin with a redescription of Piaractus brachypomus. Journal of Fish Biology jfb.13990. Doi: https://doi.org/10.1111/jfb.13990.

Falk, M., Bernhoft, A., Framstad, T., Salbu, B., Wisløff, H., Kortner, T.M. y Oropeza-Moe, M. 2018. Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. Journal of Trace Elements in Medicine and Biology. 50: 527-536 Doi: https://doi:10.1016/j.jtemb.2018.03.00.

Flohé, J.R. y Andreesen, R.L. 2000. Selenium, the Element of the Moon, in Life on Earth. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life) 49(5): 411–420. Doi: https://doi.org/10.1080/152165400410263.

Flores-Nava, A. y Brown, A. 2010. Peces nativos de agua dulce de América del Sur de interés para la acuicultura: una síntesis del estado de desarrollo tecnológico de su cultivo. Food and Agriculture Organization (FAO), Roma.

Fomenko, D.E., Novoselov, S.V., Natarajan, S.K., Lee, B.C., Koc, A., Carlson, B.A. y Gladyshev, V.N. 2008. MsrB1(Methionine-R-sulfoxide Reductase 1) Knock-out Mice. Journal of Biological Chemistry 284(9): 5986-5993. Doi: https://10.1074/jbc.m805770200.

Fontalvo, P.P. Berdugo, G.O. y Narváez Barandica, J. 2018. Diversidad y estructura genética del Prochilodus magdalenae (Pisces: Prochilodontidae) aguas arriba y abajo de la represa Betania, Colombia. Intropica 13(2): 87–100. Doi: https://doi.org/10.21676/23897864.2505.

Gatlin, D.M., Poe, W.E. y Wilson, R.P. 1986. Effects of Singular and Combined Dietary Deficiencies of Selenium and Vitamin E on Fingerling Channel Catfish (Ictalurus punctatus). The Journal of Nutrition 116(6): 1061-1067. Doi: https://doi.org/10.1093/jn/116.6.1061.

Gilannejad, N., Martínez-Rodríguez, G., Yúfera, M. y Moyano, F.J. 2018. Modelling digestive hydrolysis of nutrients in fish using factorial designs and desirability function. PLOS ONE 13(11), e0206556. Doi: https://doi:10.1371/journal.pone.0206556.

Gutiérrez-Espinosa, M.C., Velasco-Garzón, J.S. y León-Morales, C.A. 2019. Revisión: necesidades nutricionales de peces de la familia Pimelodidae en Sudamérica (Teleostei: Siluriformes). Revista de Biología Tropical 67(1): 146-163. https://dx.doi.org/10.15517/rbt.v67i1.33627.

Hamza, R.Z., y Diab, A. E.-A. A. 2020. Testicular protective and antioxidant effects of selenium nanoparticles on Monosodium glutamate-induced testicular structure alterations in male mice. Toxicology Reports 7: 254–260. Doi: https://doi.org/10.1016/j.toxrep.2020.01.012.

Han, D., Xie, S., Liu, M., Xiao, X., Liu, H., Zhu, X. y Yang, Y. 2011. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio). Aquaculture Nutrition 17(3): e741–e749. Doi: https://doi.org/10.1111/j.1365-2095.2010.00841.x.

Hawkes, W.C. y Tappel, A.L. 1983. In vitro synthesis of glutathione peroxidase from selenite Translational incorporation of selenocysteine. Biochimica et Biophysica. Acta (BBA) - Gene Structure and Expression 739(2): 225-234. https://doi.org/10.1016/0167-4781(83)90033-7.

Hedaoo, M.K., Khllare, K.P., Meshram, M.D., Sahatpure, S.K. y Patil, M.G. 2008. Comparative studies of certain Biochemical constitutents of normal cyclic and anoestrus surti buffaloes. Veterinary World 1(4): 105.

Hefnawy, A.E. y Pérez, J.T., 2008. Selenio y salud animal: importancia, deficiencia, suplementación y toxicidad. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR. 153-165.

Hilton, J.W. y Hodson, P.V. 1983. Effect of increased dietary carbohydrate on selenium metabolism and toxicity in rainbow trout (Salmo gairdneri). The Journal of Nutrition 113(6): 1241-1248. Doi: https://doi.org/10.1093/jn/113.6.1241.

Huang, X., Tang, J., Xu, J., Jia, G., Liu, G., Chen, X. y Zhao, H. 2016. Supranutritional dietary selenium induced hyperinsulinemia and dyslipidemia via affected expression of selenoprotein genes and insulin signal-related genes in broiler. RSC Advances 6(88): 84990-84998. Doi: https://doi.org/10.1039/c6ra14932d.

Jabeen, F. y Chaudhry, A.S. 2011. Chemical compositions and fatty acid profiles of three freshwater fish species. Food Chemistry 125(3): 991-996. Doi: https://doi.org/10.1016/j.foodchem.2010.09.103.

Jahanbakhshi, A., Pourmozaffar, S., Adeshina, I., Mahmoudi, R., Erfanifar, E. y Ajdari, A. 2021. Selenium nanoparticle and selenomethionine as feed additives: effects on growth performance, hepatic enzymes’ activity, mucosal immune parameters, liver histology, and appetite-related gene transcript in goldfish (Carassius auratus). Fish Physiology and Biochemistry 47(2): 639-652. Doi: https://doi.org/10.1007/s10695-021-00937-6.

Janz, D.M., D.K. DeForest, M.L. Brooks, P.M. Chapman, G. Gilron, D. Hoff, W.A. Hopkins, D.O. McIntyre, C.A. Mebane, V.P. Palace, J.P. Skorupa, and M. Wayland. 2010. Selenium toxicity to aquatic organisms. En Chapman, P.M., Adams, W.J., Brooks, M.L., Delos, C.G., Luoma S.N., Mahe W.A.r, Ohlendor, H.M.f, Presse, T.S. y D. Shaw, P. Editors. Ecological Assessment of Selenium in the Aquatic Environment. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, Florida.

Jingyuan, H., Yan, L., Wenjing, P., Wenqiang, J., Bo, L., Linghong, M. y Xianping, G. 2020. Dietary selenium enhances the growth and anti-oxidant capacity of juvenile blunt snout bream (Megalobrama amblycephala). Fish & Shellfish Immunology 101: 115-125. https://doi:10.1016/j.fsi.2020.03.041.

Kasaikina, M.V., Hatfield, D.L. y Gladyshev, V.N. 2012. Understanding selenoprotein function and regulation through the use of rodent models. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823(9): 1633-1642. https://doi.org/10.1016/j.bbamcr.2012.02.018.

Khalil, H.S., Mansour, A.T., Goda, A.M.A. y Omar, E.A. 2018. Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre, Argyrosomus regius, fingerlings. Aquaculture 501: 135-143 Doi: https://doi.org/10.1016/j.aquaculture.2018.11.018.

Khan, K.U., Zuberi, A., Fernandes, J.B.K., Ullah, I. y Sarwar, H. 2017. An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiology and Biochemistry 43(6): 1689–1705. Doi: https://doi.org/10.1007/s10695-017-0402-z.

Khan, K.U., Zuberi, A., Fernandes, J.B.K., Ullah, I. y Sarwar, H. 2017. An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiology and Biochemistry 43(6): 1689–1705. Doi: https://doi.org/10.1007/s10695-017-0402-z.

Kong, Y., Ding, Z., Zhang, Y., Ye, J. Y Du, Z. 2017. Dietary selenium requirement of juvenile oriental river prawn Macrobrachium nipponense. Aquaculture 476: 72-78. Doi: https://doi.org/10.1016/j.aquaculture.2017.04.010 .

Kong, Y., Li, S., Liu, M., Yao, C., Yang, X., Zhao, N. y Li, M. 2018. Effect of dietary organic selenium on survival, growth, antioxidation, immunity and gene expressions of selenoproteins in abalone Haliotis discus hannai. Aquaculture Research doi: https://doi.org/110.1111/are.13956.

Kryukov, G.V. 2003. Characterization of mammalian Selenoproteomes. Science 300 (5624): 1439-1443. Doi: https://doi.org/10.1126/science.1083516.

Kumaraswamy, E., Malykh, A., Korotkov, K. V., Kozyavkin, S., Hu, Y., Kwon, S.Y. y Gladyshev, V.N. 2000. Structure-Expression Relationships of the 15-kDa Selenoprotein Gene. Journal of Biological Chemistry 275(45): 35540-35547. https://doi.org/10.1074/jbc.m004014200.

Lee, S., Nambi, R.W., Won, S., Katya, K., y Bai, S.C. 2016. Dietary selenium requirement and toxicity levels in juvenile Nile tilapia, Oreochromis niloticus. Aquaculture 464: 153–158. Doi: https://doi.org/10.1016/j.aquaculture.2016.06.027.

Li, J.-G., Zhou, J.-C., Zhao, H., Lei, X.-G., Xia, X.-J., Gao, G., y Wang, K.-N. 2011. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs fed selenium-enriched yeast. Meat Science 87(2): 95-100. Doi: https://doi.org/10.1016/j.meatsci.2010.05.019.

Lin, Y.H., Wang, H.Y y Shiau, S.Y. 2009. Dietary nucleotide supplementation enhances growth and immune responses of grouper, Epinephelus malabaricus. Aquaculture Nutrition 15(2), 117–122. Doi: https://doi.org/10.1111/j.1365-2095.2007.00561.x.

Liu, G.X., Jiang, G.Z., Lu, K.L., Li, X.F., Zhou, M., Zhang, D.D. y Liu, W.B. 2016a. Effects of dietary selenium on the growth, selenium status, antioxidant activities, muscle composition and meat quality of blunt snout bream, Megalobrama amblycephala. Aquaculture Nutrition 23(4): 777–787. Doi: https://doi.org/10.1111/anu.12444.

Liu, Z., Qu, Y., Wang, J. Y Wu, R. 2016b. Selenium Deficiency Attenuates Chicken Duodenal Mucosal Immunity via Activation of the NF-κb Signaling Pathway. Biological Trace Element Research, 172(2): 465-473. Doi: https://doi.org/10.1007/s12011-015-0589-8.

Liu, K., Wang, X. J., Ai, Q., Mai, K., y Zhang, W. 2010. Dietary selenium requirement for juvenile cobia, Rachycentron canadum L. Aquaculture Research no–no. Doi: https://doi.org/10.1111/j.1365-2109.2010.02562.x.

Lobanov, A.V., Hatfield, D.L. y Gladyshev, V.N. 2008. Reduced reliance on the trace element selenium during evolution of mammals. Genome Biology 9(3): R62. Doi: https://doi.org/10.1186/gb-2008-9-3-r62.

Lobanov, A.V., Hatfield, D.L. y Gladyshev, V.N. 2009. Eukaryotic selenoproteins and selenoproteomes. Biochimica et Biophysica Acta (BBA) General Subjects 1790(11): 1424-1428. Doi: https://doi.org/10.1016/j.bbagen.2009.05.014.

Lothrop, A.P., Ruggles, E.L y Hondal, R.J. 2009. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue. Biochemistry 48(26): 6213-6223. Doi: https://doi.org/10.1021/bi802146w.

Ma, Y.L., Lindemann, M.D., Pierce, J L., Unrine, J.M. y Cromwell, G.L. 2014. Effect of inorganic or organic selenium supplementation on reproductive performance and tissue trace mineral concentrations in gravid first-parity gilts, fetuses, and nursing piglets123. Journal of Animal Science 92(12): 5540-5550. Doi: https://doi.org/10.2527/jas.2014-7590.

Mahan, D.C. y Peters, J.C. 2004. Long-term effects of dietary organic and inorganic selenium sources and levels on reproducing sows and their progeny1,2,3,4. Journal of Animal Science 82(5): 1343–1358. Doi: https://doi.org/10.2527/2004.8251343x.

Maldonado, J.A., DoNascimiento, C., Usma, O., Herrera, E.E., y García Melo, J.E. 2020. Biodiversidad de los peces de agua dulce en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humbold, Bogotá D.C.

Mansour, A. T.-E., Goda, A. A., Omar, E. A., Khalil, H.S. y Esteban, M.Á. 2017. Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish & Shellfish Immunology 68: 516-524. Doi: https://doi.org/10.1016/j.fsi.2017.07.060.

Mariotti, M., Ridge, P.G., Zhang, Y., Lobanov, A.V., Pringle, T.H., Guigo, R. y Gladyshev, V.N. 2012. Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes. PLoS ONE 7(3): e33066. Doi: https://doi.org/10.1371/journal.pone.0033066.

Markley, R.L., Restori, K.H., Katkere, B., Sumner, S.E., Nicol, M.J., Tyryshkina, A., Nettleford, S.K., Williamson, D.R., Place, D. E., Dewan, K.K., Shay, A.E., Carlson, B. A., Girirajan, S., Prabhu, K.S. y Kirimanjeswara, G.S. 2021. Macrophage Selenoproteins Restrict intracellular replication of Francisella tularensis and are essential for host immunity. Frontiers in immunology 12:701341. Doi: https://doi.org/10.3389/fimmu.2021.701341.

Medina Cruz, D., Mi, G. y Webster, T.J. 2018. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A 106(5): 1400-1412. Doi: https://doi.org/10.1002/jbm.a.36347.

Monteiro, D.A., Rantin, F.T. y Kalinin, A.L. 2009. The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus exposed to organophosphate insecticide Folisuper 600 BR® (methyl parathion). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149(1): 40-49. Doi: https://doi.org/10.1016/j.cbpc.2008.06.012.

Nettore, I.C., De Nisco, E., Desiderio, S., Passaro, C., Maione, L., Negri, M. y Macchia, P.E. 2017. Selenium supplementation modulates apoptotic processes in thyroid follicular cells. BioFactors 43(3): 415-423. Doi: https://doi.org/10.1002/biof.1351.

Norambuena, F., Estevez, A., Bell, G., Carazo, I. Y Duncan, N. 2012. Proximate and fatty acid compositions in muscle, liver and gonads of wild versus cultured broodstock of Senegalese sole (Solea senegalensis). Aquaculture 356-357: 176-185. Doi: https://doi.org/10.1016/j.aquaculture.2012.05.018.

National Research Council (NRC). 2011. Nutrient requirements of fish and shrimp. The National Academies Press, Washington.

Pacini, N., Abete, M.C., Dörr, A.J.M., Prearo, M., Natali, M. y Elia, A.C. 2012. Detoxifying response in juvenile tench fed by selenium diet. Environmental Toxicology and Pharmacology 33(1): 46–52. Doi: https://doi.org/10.1016/j.etap.2011.10.004.

Pacitti, D., Lawan, M.M., Sweetman, J., Martin, S.A.M., Feldmann, J. y Secombes, C.J. 2015. Selenium supplementation in fish: a combined chemical and biomolecular study to understand sel-plex assimilation and impact on selenoproteome expression in rainbow trout (Oncorhynchus mykiss). PLos ONE 10(5): e0127041. Doi: https://doi.org/10.1371/journal.pone.0127041.

Pádua, S., Ranzani Paiva, M., Tavares-Dias, M. y Egami, M.I. 2013. Métodos para Análise Hematológica em Peixes. EDUEM,Lisboa.

Papp, L.V., Lu, J., Holmgren, A., y Khanna, K.K. 2007. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxidants & Redox Signaling 9(7): 775–806. Doi: https://doi:10.1089/ars.2007.1528.

Penglase, S., Hamre, K., Rasinger, J. D. y Ellingsen, S. 2014. Selenium status affects selenoprotein expression, reproduction, and F1 generation locomotor activity in zebrafish (Danio rerio). British Journal of Nutrition 111(11) :1918–1931. Doi: https://doi.org/10.1017/S000711451300439X.

Penglase, S., Hamre, K., Sweetman, J.W. y Nordgreen, A. 2011. A new method to increase and maintain the concentration of selenium in rotifers (Brachionus spp.). Aquaculture 315(1-2): 144-153. Doi: https://doi:10.1016/j.aquaculture.2010.09.007.

Petrujkić, B.T., Šefer, D.S., Jovanović, I.B., Jovičin, M., Janković, S., Jakovljević, G. y Anderson, R.C. 2014. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars. Animal Feed Science and Technology 197: 194-205. Doi: https://doi.org/10.1016/j.anifeedsci.2014.09.001.

Pohlenz, C. y Gatlin, D. M. 2014. Interrelationships between fish nutrition and health. Aquaculture 431: 111-117. Doi: https://doi.org/10.1016/j.aquaculture.2014.02.008.

Prieto, M., Atencio, V. y Pardo, S. 2015. El bagre blanco Sorubim cuspicaudus y su potencial en Acuicultura. Fondo editorial Universidad de Córdoba, Monteria.

Qazi, I., Angel, C., Yang, H., Pan, B., Zoidis, E., Zeng, C.J. y Zhou, G.B. 2018. Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 23(12): 3053. Doi: https://doi.org/doi:10.3390/molecules23123053.

Ramírez-Espitia, E.J., Hurtado-Giraldo, H. y Gómez-Ramírez, E. 2020. Anatomía general, histología y morfometría del sistema digestivo del pez Pterophyllum scalare (Perciformes: Cichlidae). Revista de Biología Tropical 68(4): 1371-1383. Doi: https://dx.doi.org/10.15517/rbt.v68i4.40393.

Ramos, S.J., Faquin, V., Almeida, H.J. de, Ávila, F.W., Guilherme, L. R. G., Bastos, C.E.A. y Ávila, P.A. 2011. Selenato e selenito na produção, nutrição mineral e biofortificação com selênio em cultivares de alface. Revista Brasileira de Ciência Do Solo 35(4): 1347-1355. Doi: https://doi.org/10.1590/S0100-06832011000400029.

Ren, X., Wang, S., Zhang, C., Hu, X., Zhou, L., Li, Y. y Xu, L. (2020). Selenium ameliorates cadmium-induced mouse leydig TM3 cell apoptosis via inhibiting the ROS/JNK /c-jun signaling pathway. Ecotoxicology and Environmental Safety 192: 110266. Doi: https://doi.org/10.1016/j.ecoenv.2020.110266.

Ribeiro, A.R.A., Ribeiro, L., Saele, Ø., Hamre, K., Dinis, M.T. y Moren, M. 2012. Selenium supplementation changes glutathione peroxidase activity and thyroid hormone production in Senegalese sole (Solea senegalensis) larvae. Aquaculture Nutrition 18(5): 559-567. Doi: https://doi.org/doi:10.1111/j.1365-2095.2011.00911.x.

Rider, S.A., Davies, S.J., Jha, A.N., Fisher, A.A., Knight, J. y Sweetman, J.W. 2009. Supra-nutritional dietary intake of selenite and selenium yeast in normal and stressed rainbow trout (Oncorhynchus mykiss): Implications on selenium status and health responses. Aquaculture 295(3-4): 282-291. https://doi.org/10.1016/j.aquaculture.2009.07.003.

Ruales, D., Carlos A. y Vásquez Torres, W. 2010. Transporte iónico en el epitelio branquial de peces de agua dulce. Revista Lasallista de Investigación 7(1): 85-99.

Ryan-Harshman, M. y Aldoori, W. 2005. Health benefits of selected vitamins. Canadian family physician Medecin de famille canadien 51(7): 965–968.

Saffari, S., Keyvanshokooh, S., Zakeri, M., Johari, S.A., Pasha-Zanoosi, H. y Mozanzadeh, M.T. 2018. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiology and Biochemistry 44(4): 1087-1097. Doi: https://doi.org/10.1007/s10695-018-0496-y.

Schomburg, L. y Schweizer, U. 2009. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochimica et Biophysica Acta (BBA) - General Subjects 1790(11): 1453-1462. Doi: https://doi.org/10.1016/j.bbagen.2009.03.015.

Schram, E., Pedrero, Z., Cámara, C., van der Heul, J. W. y Luten, J.B. 2008. Enrichment of African catfish with functional selenium originating from garlic. Aquaculture Research 39(8): 850-860. Doi: https://doi.org/10.1111/j.1365-2109.2008.01938.x.

Schrauzer, G.N. y Surai, P.F. 2009. Selenium in human and animal nutrition: resolved and unresolved issues. A partly historical treatise in commemoration of the fiftieth anniversary of the discovery of the biological essentiality of selenium, dedicated to the memory of Klaus. Critical Reviews in Biotechnology 29(1) 2-9. Doi: https://doi.org/10.1080/0738855090272826.

Schwarz, K. y Folz Scott, C.M. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society 1957 79 (12): 3292-3293. Doi: https://doi.org/10.1021/ja01569a087.

Skugor, S., Jørgensen, S., Gjerde, B. y Krasnov, A. 2009. Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis. BMC Genomics 10(1): 503. Doi: https://doi.org/10.1186/1471-2164-10-503.

Stewart, A.R., Grosell, M., Buchwalter, D. B., Fisher, N.S., Luoma, S.N., Matthews, T. y Wang, W. X. 2010. Bioaccumulation and trophic transfer of selenium. In: Chapman, P.M. Editorial. Ecological assessment of selenium in the aquatic environment. SETAC in collaboration with CRC Press, Boca Raton.

Surai, P.F. 2020. Antioxidants in Poultry Nutrition and Reproduction: An Update. Antioxidants 9(2): 105. Doi: https://doi.org/10.3390/antiox9020105.

Takahashi, L.S., Biller-Takahashi, J.D., Mansano, C. F. M., Urbinati, E. C., Gimbo, R. Y. y Saita, M. 2017. Long-term organic selenium supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus). Fish & Shellfish Immunology 60: 311-317. Doi: https://doi.org/10.1016/j.fsi.2016.11.060.

Valdelamar Villegas, J. C., García Pacheco, L. C. ., Cuadro Alzamora, S. M. ., Torres Benítez , J. D., & Arciniegas Suárez, C. A. . (2020). Uso de la ictiofauna para la evaluación de la condición ecológica y ambiental de un complejo cenagoso en el Caribe colombiano. Intropica 15(2): 144–154. Doi: https://doi.org/10.21676/23897864.3553.

Vázquez, D. 2018. Un vistazo biofísico-funcional a los sistemas redox tiorredoxina y glutarredoxina. Revista Citecsa 10(16) 17-31.

Velasco-Garzón, J.S. y Gutiérrez-Espinosa, M.C. 2019. Aspectos nutricionales de peces ornamentales de agua dulce. Revista Politécnica 15(30): 82-93: Doi: https://doi.org/10.33571/rpolitec.v15n30a8.

Velasco-Santamaría, Y. y Corredor-Santamaría, W. 2011. Nutritional requirements of freshwater ornamental fish: a review. Revista MVZ Córdoba 16(2): 2458-2469.

Vinchira, J.E, Wills, G.A. y Muñoz, A.P. 2014. Desempeño productivo, composición y biodisponibilidad relativa de selenio en tilapia nilótica -Oreochromis niloticus- suplementada con selenio orgánico e inorgánico. Revista de la Facultad de Medicina Veterinaria y de Zootecnia 61(2): 186-202. Doi: https://doi.org/10.15446/rfmvz.v61n2.44681.

Vinchira, J.E. y Muñoz-Ramírez, A.P. 2010. Selenio: nutriente objetivo para mejorar la composición nutricional del pescado cultivado. Revista de la Facultad de Medicina Veterinaria y de Zootecnia 57(1): 59-75.

Wang, L., Xiao, J.X., Hua, Y., Xiang, X.W., Zhou, Y.F., Ye, L. y Shao, Q.J. 2019. Effects of dietary selenium polysaccharide on growth performance, oxidative stress and tissue selenium accumulation of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture 503: 389-395. Doi: https://doi.org/10.1016/j.aquaculture.2019.01.033.

Wang, L., Zhang, X., Wu, L., Liu, Q., Zhang, D. y Yin, J. 2018. Expression of selenoprotein genes in muscle is crucial for the growth of rainbow trout (Oncorhynchus mykiss) fed diets supplemented with selenium yeast. Aquaculture 492: 82-90. https://doi.org/10.1016/j.aquaculture.2018.03.054.

Wang, K.Y., Peng, C.Z., Huang, J.L., Huang, Y.D., Jin, M.C. y Geng, Y. 2013. The pathology of selenium deficiency in Cyprinus carpio L. Journal of Fish Diseases 36(7): 609-615. Doi: https://doi.org/10.1111/jfd.12030.

Wischhusen, P., Arnaudguilhem, C., Bueno, M., Vallverdu, G., Bouyssiere, B., Briens, M.B. y Mounicou, S. 2021. Tissue localization of selenium of parental or dietary origin in rainbow trout (Oncorhynchus mykiss) fry using LA-ICP MS bioimaging. Metallomics 13(2): mfaa008. Doi: https://doi.org/10.1093/mtomcs/mfaa008.

Xiong, X., Lan, D., Li, J., Lin, Y. y Li, M. 2017. Selenium supplementation during in vitro maturation enhances meiosis and developmental capacity of yak oocytes. Animal Science Journal 89(2): 298-306. https://doi.org/10.1111/asj.12894.

Yepes-Blandón, J.A. y Botero-Aguirre, M. 2018. Ácidos grasos poliinsaturados en la reproducción de peces: algunos Aspectos fisiológicos y endocrinológicos. Orinoquia 22(1): 68-79. Doi: https://doi.org/10.22579/20112629.483.

Zhou, X., Wang, Y., Gu, Q. y Li, W. 2009. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291(1-2), 78–81. Doi: https://doi.org/10.1016/j.aquaculture.2009.03.007.

Zhu, L., Han, D., Zhu, X., Yang, Y., Jin, J., Liu, H., y Xie, S. 2016. Dietary selenium requirement for on-growing gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture Research, 48(6):2841–2851. doi:10.1111/are.13118.

Zoidis, E., Seremelis, I., Kontopoulos, N. y Danezis, G. 2018. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 7(5): 66. Doi: https://doi.org/10.3390/antiox7050066

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 Intropica

Descargas

Los datos de descargas todavía no están disponibles.