Diversidad de hifomicetos acuáticos en la cabecera de la quebrada Grande, estado Miranda, Venezuela

Contenido principal del artículo

Rafael Fernandrez Da Silva
Gunta Smits Briedis

Resumen

En los ecosistemas dulceacuícolas, en particular en sistemas lóticos como ríos y quebradas prístinos, se encuentran los hifomicetos acuáticos: hongos anamórficos que degradan material vegetal alóctono o autóctono, facilitando el flujo de nutrientes y energía a niveles tróficos superiores. La presencia de estos microorganismos fúngicos es importante desde el punto de vista ecológico ya que pueden ser bioindicadores de calidad ambiental. Este grupo es ecológicamente heterogéneo y se clasifica en tres tipos: a) ingoldianos, cuyas esporas, mayoritariamente hialinas y tetraradiadas, se desarrollan exclusivamente en el agua; b) aeroacuáticos, de forma helicoidal, cuyo desarrollo se presenta entre el agua y el aire; c) transicionales, de esporas generalmente de forma variable y de color pardo, con desarrollo tanto en el agua como en el suelo. A partir de muestras de espuma natural y mediante microscopía de luz, se registraron mensualmente, durante un año, la riqueza y la diversidad de estas especies en la cabecera de la quebrada Grande, cerca de una represa de agua para la comunidad aledaña. Se identificaron 73 especies: 41 ingoldianas, 4 aero-acuáticas y 28 transicionales, incluyendo 22 nuevos registros para el país: tres ingoldianos (Tetracladium apiense, Tetracladium breve y Tetracladium furcatum), un aero-acuático (Helicodendron intestinale) y 18 transicionales (Acrodictys septosporioides, Acumispora uniseptada, Bactrodesmium fruticosum, Blodgettia indica, Dactylaria acerina, Dactylaria echinophila, Dactylaria humicola, Dactylaria pyricularoides, Endophragmiella pallescens, Fusariella curvata, Fusariella hughesii, Fusarium phragmitis, Mirandina corticola, Sporidesmium acutifusiforme, Sporidesmium casuarinae, Stenella doliiformis, Stenella ocoteae y Stenella variabilis). Entre ellos, el aero-acuático y 17 transicionales, excepto Blodgettia indica, son nuevos reportes para América neotropical. Se encontró que los hifomicetos acuáticos son muy diversos, en particular los ingoldianos y transicionales. Solo algunas especies dominan ampliamente en cada categoría.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Fernandrez Da Silva, R., & Smits Briedis, G. . (2023). Diversidad de hifomicetos acuáticos en la cabecera de la quebrada Grande, estado Miranda, Venezuela. Intropica, 142–152. https://doi.org/10.21676/23897864.4980
Sección
Artículo de investigación científica y tecnológica

Citas

Abdullah, S., Fisher, J. y Webster, J. (1979). Two new species of aero-aquatic hyphomycete. Transactions of the British Mycological Society, 72(2), 324-329. https://doi.org/10.1016/S0007-1536(79)80052-2.

Bärlocher, F. (1992). Community Organization. En F. Bärlocher (Ed.), The Ecology of Aquatic Hyphomycetes (pp. 38-76). Springer-Verlag.

Betancourt, C., Cruz, J. y Garcia, J. (1987). Los hifomicetos acuáticos de la Quebrada Doña Juana en el Bosque Estatal de Toro Negro, Villalba, Puerto Rico. Caribbean Journal of Science, 23(2), 278-284.

Breda, M., Binotto, A., Biasi, C. y Hepp, U. (2021). Influence of environmental predictors on hyphomycete assemblages in subtropical streams. Acta Oecologica, 113, 103778.

Chauvet, E. (1991). Aquatic Hyphomycete Distribution in South-Western France. Journal of Biogeography, 18(6), 699-706. https://doi.org/10.2307/2845551.

Cressa, C. y Smits, G. (2007). Aquatic hyphomycetes in two blackwater streams of Venezuela. Ecotropicos, 20(2), 82-85.

Da Silva, C. R., Castañeda, R. y Malosso, E. (2019). Comparison of aquatic hyphomycetes communities between lotic and lentic environments in the Atlantic rain forest of Pernambuco, Northeast Brazil. Fungal Biology, 123(9), 660-668. https://doi.org/10.1016/j.funbio.2019.05.013.

Dang, C., Gessner, M. y Chauvet, E. (2007). Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycologia, 99(1), 24-32. https://doi.org/10.3852/mycologia.99.1.24.

Descals, E. (2005). Diagnostic characters of propagules of Ingoldian fungi. Mycological Research, 109(5), 545-555. https://doi.org/10.1017/S0953756205002728.

Descals, E. y Moralejo, E. (2001). El agua y la reproducción asexual en los hongos ingoldianos. Botánica Complutensis, 25, 13-71.

Du, J., Qv, W., Niu, Y., Qv, M., Jin, K., Xie, J. y Li, Z. (2022). Nanoplastic pollution inhibits stream leaf decomposition through modulating microbial metabolic activity and fungal community structure. Journal of Hazardous Materials, 424, 127392.

Duarte, S., Bärlocher, F., Pascoal, C. y Cássio, F. (2016). Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal Ecology, 19, 169-181. https://doi.org/10.1016/j.funeco.2015.06.002.

Ellis, M. B. (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological Institute.

Ellis, M. B. (1976). More Dematiaceous Hyphomycetes. Commonwealth Mycological Institute.

Farias, H., Assuncao, A., Souza, D., Rodrigues, F. y Fiuza, P. (2023). Aquatic hyphomycetes associated with plat debris in freshwater ecosystems of the Atlantic Forests of Rio Grande do Norte, Brazil. New Zealand Journal of Botany, 61(1). https://doi.org/10.1080/0028825X.2023.2201456.

Farias, H., De Souza, D., Souza, J., Araujpo, L., Rodrigues, F. y Fiuza, P. (2023). Diversity and composition of asexual ascomycetes associated with aquatic and terrestrial forest plant debris in Rio Grande do Norte (Brazil) revealed by direct observation. Nova Hedwigia, 116(1-2), 89-104. https://doi.org/10.1127/nova_hedwigia/2023/0724.

Fernández, R. y Smits, G. (2005). Estudio preliminar de los hongos acuáticos en el río Cabriales (Parque San Esteban, Edo. Carabobo). Saber, 17, 147-149.

Fernández, R. y Smits, G. (2009). Registro de la presencia de hifomicetos en ríos de la cordillera de la costa, Venezuela. Interciencia, 34(8), 589-592.

Fernández, R y Smits, G. (2011). Hifomicetos acuáticos en la cabecera del río Guárico en el Estado Carabobo, Venezuela. Interciencia, 36(11), 831-834.

Fernández, R. y Smits, G. (2013). Diversidad de hifomicetos acuáticos en la quebrada “La Estación” de la Hacienda Ecológica “La Guáquira”, Yaracuy, Venezuela. Interciencia, 38(7), 496-501.

Fernández, R. y Smits, G. (2015). Actualización de inventario de especies de hifomicetos acuáticos en Venezuela. Gestión y Ambiente, 18(2), 153-180.

Fernández, R. y Smits, G. (2016). Hifomicetos acuáticos en la cabecera del río Chirgua, Carabobo, Venezuela. Interciencia, 41(2), 110-113.

Fernández, R. y Smits, G. (2018). Registro de hifomicetos acuáticos en el río Guáquira de la Reserva Ecológica Guáquira (San Felipe, Venezuela). Gestión y Ambiente, 21(1), 121-128. https://doi.org/10.15446/ga.v21n1.71778.

Fernández, R. y Smits, G. (2020). Hifomicetos acuáticos como bioindicadores de calidad ambiental en el río Vigirima (Guacara, Carabobo-Venezuela). Gestión y Ambiente, 23(2), 165-181. https://doi.org/10.15446/ga.v23n2.95686.

Fernandez, R. y Smits, G. (2021). Hifomicetos acuáticos en los ríos Borburata y Patanemo (Puerto Cabello, Carabobo-Venezuela) como bioindicadores de calidad ambiental. Gestión y Ambiente, 24(2), 98607. https://doi.org/10.15446/ga.v24n2.98607.

Fernández, R., Smits, G. y Pinto, M. (2010). Características e importancia de los hifomicetos acuáticos y registro de especies en Venezuela. Revista Faraute de Ciencias y Tecnología, 5(2), 1-15.

Fernández, R., Storaci, V. y Smits, G. (2017). Evaluación de los hifomicetos acuáticos como bioindicadores de calidad ambiental en el río Chirgua (Bejuma, Venezuela). Gestión y Ambiente, 20(1), 82-94. https://doi.org/10.15446/ga.v20n1.62241.

Ferreira, M., Raposeiro, P., Pereira, A., Cruz, A., Costa, A., Graça, M. y Gonçalves, V. (2016). Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology, 61(5), 783-799. https://doi.org/10.1111/fwb.12749.

Fiuza, P., Cantillo, T., Monteiro, J., Gulis, V. y Gusmão, L. (2017). Rare hyphomycetes from freshwater environments from Chapada Diamantina, Bahia, Brazil. Nova Hedwigia, 104(4), 451-466. https://doi.org/10.1127/nova_hedwigia/2016/0375.

Fiuza, P., Barbosa, F., Medeiros, A. y Gusmão, L. (2022). Ingoldian fungal assamblages from Brazilian rainforests, shrubland and savanna. New Zealand Journal of Botany, 60(3), 297-313. http://dx.doi.org/10.1080/0028825X.2021.2023197.

Gomes, Ubiratan, L., De Souza, R., Gonçalves, J., Da Silva, M., Moretto, Y., Chaves, R., Restello, R. y Medeiros, A. (2023). The cooler the better: Increased aquatic hyphomycete diversity subtropical streams along a neotropical latitudinal gradient. Fungal Ecology, 62, 101223. https://doi.org/10.1016/j.funeco.2022.101223.

Gönczol, J. y Révay, A. (1999). Studies on the aquatic hyphomycetes of the Morgò stream, Hungary. II. Seasonal periodicity of conidial populations. Archiv Fur Hydrobiologie, 144(4), 495-508. https://doi.org/10.1127/archivhydrobiol/144/1999/495.

Hammer, Ø., Harper, D. A. T. y Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron., 4(1), 4.

Huber, O. y Alarcón, C. (1988). Mapa de vegetación de Venezuela. 1:2.000.000. MARNR. The Nature Conservancy.

Ingold, C. T. (1975). An Illustrated Guide to Aquatic and Water-Borne Hyphomycetes (Fungi Imperfecti) with Notes on Their Biology. Freshwater Biological Association.

Iqbal, S. H. (1997). Species diversity of freshwater hyphomycetes in some streams of Pakistan. II. Seasonal differences of fungal communities on leaves. Annales Botanici Fennici, 34(3), 165-178.

Jabiol, J., Bruder, A., Gessner, M., Makkonen, M., Mckie, B., Peeters, E., Vos, V. y Chauvet, E. (2013). Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecology, 6(5), 439-448. https://doi.org/10.1016/j.funeco.2013.04.002.

Justiniano, J. y Betancourt, C. (1989). Hongos ingoldianos presentes en el río Maricao, Puerto Rico. Caribbean Journal of Science, 25, 111-114.

Koske, R. y Duncan, I. (1974). Temperature effects on growth, sporulation and germination of some “aquatic” hyphomycetes. Canadian Journal of Botany, 52(6), 1387-1391. https://doi.org/10.1139/b74-180.

Koske, R. y Duncan, I. (1974). Temperature effects on growth, sporulation and germination of some “aquatic” hyphomycetes. Canadian Journal of Botany, 52(6), 1387-1391. https://doi.org/10.1139/b74-180.

Kravetz, S. y Pardo, Y. (2020). Presencia de hongos ingoldianos productores de esporas sigmoideas y tetraradiadas en dos tramos del río Acaciítas (Acacías, Meta-Colombia). III Congreso Internacional de Ciencias Básicas e Ingeniería, Villavicencio-Meta, Universidad de los Llanos, Colombia.

Kravetz, S., Rodríguez, C., Vilches, C., Huta, F. y Giorgi, A. (2023). Hongos y algas como indicadores de la calidad del agua de un arroyo urbano. Ecología Austral, 33(2), 314-640.

Kumar, G. y Pachauri, S. (2022). Fungi: The indicators of pollution. En S. Bandh y S. Shafi (Eds.), Freshwater Mycology. Perspectives of fungal dynamics in freshwater ecosystems (pp. 277-296).

Lazar, A., Mushinski, R. y Bending, G. (2022). Landscape scale ecology of Tetracladium spp. fungal root endophytes. Environmental Microbiome, 17(40). https://doi.org/10.1186/s40793-022-00431-3.

Matsushima, T. (1971). Microfungi of the Solomon Islands and Papua-New Guinea.

Matsushima, T. (1980). Saprophytic microfungi from Taiwan. Part. 1. Hyphomycetes. Matsushima Mycological Memoirs No 1. Matsushima Fungus Collection.

Matsushima, T. (1982). Matsushima Mycological Memoirs No 2. Matsushima Fungus Collection.

Matsushima, T. (1983). Matsushima Mycological Memoirs No 3. Matsushima Fungus Collection.

Matsushima, T. (1985). Matsushima Mycological Memoirs No 4. Matsushima Fungus Collection.

Matsushima, T. (1987). Matsushima Mycological Memoirs No 5. Matsushima Fungus Collection.

Matsushima, T. (1989). Matsushima Mycological Memoirs No 6. Matsushima Fungus Collection.

Matsushima, T. (1993). Matsushima Mycological Memoirs No 7. Matsushima Fungus Collection.

Matsushima, T. (1995). Matsushima Mycological Memoirs No 8. Matsushima Fungus Collection.

Matsushima, T. (1996). Matsushima Mycological Memoirs No 9. Matsushima Fungus Collection.

Matsushima, T. (2001). Matsushima Mycological Memoirs No 10. Matsushima Fungus Collection.

Michaelides, J. y Kendrick, B. (1982). The bubble-trap propagules of Beverwykella, Helicoon and other aeroaquatic fungi. Mycotaxon, 14, 247-260.

Nilsson, S. (1962). Some aquatic hyphomycetes from South America. Svensk Botanisk Tidskrift, 56, 351-361.

Paliwal, P. y Sati, S. (2009). Distribution of Aquatic Fungi in Relation to Physicochemical Factors of Kosi River in Kumaun Himalaya. Nature Science, 7(3), 70-74.

Pinto, M. y Smits, G. (2012). Evaluación preliminar de la riqueza de especies de hifomicetos acuáticos en ríos de la vertiente norte de la cordillera de la costa, Estado Aragua-Venezuela. Intropica, 7, 31-36.

Pinto, M., Fernández, R. y Smits, G. (2009). Comparación de métodos en la caracterización de la biodiversidad de hifomicetos acuáticos en el río Cúpira, Estado Carabobo, Venezuela. Interciencia, 34(7), 497-501.

Santos-Flores, C. y Betancourt-López, C. (1997). Aquatic and water-borne hyphomycetes (Deuteromycotina) in streams of Puerto Rico (Including records from other Neotropical locations). Caribbean Journal of Science (Spec. Publ. 2).

Schoenlein-Crusius, I. y Grandi, R. (2003). The diversity of aquatic Hyphomycetes in South America. Brazilian Journal of Microbiology, 34(3), 183-193. https://doi.org/10.1590/S1517-83822003000300001.

Schoenlein-Crusius, I., Moreira, C. y Gomes, E. (2015). Riqueza dos fungos ingoldianos e dos fungos aquáticos facultativos do Parque Municipal da Aclimação, São Paulo, SP, Brasil. Hoehnea, 42(2), 239-251. https://doi.org/10.1590/2236-8906-52/2014.

Seena, S., Baschien, C., Barros, J., Sridhar, K., Graca, M., Mykra, H. y Bundschuh, M. (2022). Ecosystem services provided by fungi in freshwaters: a wake-up call. Hydrobiologia, 850, 2779-2794. https://doi.org/10.1007/s10750-022-05030-4.

Seena, S., Gutiérrez, I., Barros, J., Nunes, C., Marques, J., Kumar, S. y Goncalves, A. (2022). Impacts of low concentrations of nanoplastics on leaf litter decomposition and food quality for detritivores in streams. Journal of Hazardous Materials, 429, 128320. https://doi.org/10.1016/j.jhazmat.2022.128320.

Smits, G., Fernández, R y Cressa, C. (2007). Preliminary study of aquatic hyphomycetes from Venezuelan streams. Acta Botánica Venezuelica, 30(2), 345-355.

Storaci, V., Fernández, R. y Smits, G. (2013). Evaluación de la calidad de agua del río Cúpira (La Cumaca, Estado Carabobo, Venezuela) mediante bioindicadores microbiológicos y parámetros fisicoquímicos. Interciencia, 38(7), 480-487.

Storaci, V., Fernández, R. y Smits, G. (2014). Hifomicetos acuáticos en el río Cúpira (La Cumaca, Estado Carabobo, Venezuela). Ciencia, 22(1), 21-27.

Tarda A., Nazareno, M. y Gómez, N. (2019). Assemblage of dematiaceous and Ingoldian fungi associated with leaf litter of decomposing Typha latifolia L. (Typhaceae) in riverine wetlands of the Pampean plain (Argentina) exposed to different water quality. Journal of Environmental Management, 250, 109409. https://doi.org/10.1016/j.jenvman.2019.109409.

Tsui, C., Baschien, C. y Goh, T. (2016). Biology and Ecology of Freshwater Fungi. En D. W. Li (Ed.), Biology of Microfungi (pp. 285-313). Springer Verlag.