Bullfrog growth parameters in continuous water-flow tanks systems on a commercial scale

Contenido principal del artículo

Carlos Humberto Hernández-López
Heimy Franceline Martínez-Sánchez
Alfredo Emmanuel Vázquez-Olivares
Jorge Flores-Olivares

Resumen

The growth parameters of hatchery-reared bullfrog (Lithobates catesbeianus) reared at commercial continuous water-flow tanks systems were studied and discussed. We stock 3.000 juvenile with a density of 60 frogs/m2 (mean weight 16 ± 1.82 g) into three 16.5 m2 continuous water-flow tank systems with a depth of 12 cm flooded height. Bullfrog´s were fed twice daily (8:00 and 16:00 hours) with a reference floating extruded diet (45 % crude protein and 16 % crude lipids). After 50 day the mean weight was 26.03 ± 2.72 g. The apparent feed conversion rate (AFCR) was 1.5. A multi-model approach was used for select the best growth model for juvenile bullfrog under culture conditions. Two variations of Schnute model and Ruiz-Velazco model were used as a candidate model. With a weight of evidence of 76.94% according to Akaike weight, case 3 of Schnutte model was selected as the best model to describe bullfrog growth in continuous water-flow tank systems. The results about the best model obtained in this experiment are only applicable for the interval from 16 to 32 g.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Hernández-López, C. H. ., Martínez-Sánchez , H. F., Vázquez-Olivares, A. E., & Flores-Olivares , J. (2025). Bullfrog growth parameters in continuous water-flow tanks systems on a commercial scale. Intropica, 19(2). https://doi.org/10.21676/23897864.6198
Sección
Nota científica

Citas

Baer, A., Schulz, C., Traulsen, I., y Krieter J. (2011). Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of 3 different growth models. Aquaculture International, 19:497– 511. https://doi.org/10.1007/s10499-010-9365-0

Braga, L. G. y Lima, S. L. (2001). Influence of environmental temperature on the bullfrog performance, Rana catesbeiana (Shaw, 1802) in the growing phase. Revista Brasileira de Zootecnia (30): 1659-1663. https://doi.org/10.1590/S1516-35982001000700001

Haddon, M. (2001). Modelling and quantitative methods in fisheries. Chapman and Hall. Boca Raton. 406p.

Hernández-López, C. H. y Hernández-Yau, J. A. (2023). Growth of bullfrog juveniles in continuous flow ponds as food security alternative for fishing communities. IPSUMTEC 6 (4). https://doi.org/10.61117/ipsumtec.v6i4.265

INAPESCA. Instituto Nacional de Acuacultura y Pesca. (2018). Carta Nacional Acuícola, edición 2012. (Statistical yearbook of aquaculture, 2012 editions). Mazatlán. También disponible en la página web: https://inapesca.gob.mx/portal/Transparencia/carta-nacional-acuicola.php

Islas-Ojeda, E., García-Munguía, A., Chávez-González, L., López-Gutierrez, M., Hernández-Valdivia, E. y García-Munguía, C. (2021). Sustainable production of bullfrogs (Lithobates catesbeianus) with reused water from a Biofloc system. Abanico veterinario ISSN 2448-6132. https://doi.org/10.21929/abavet2021.37

Jurado-Molina, J., Hernández-López, C. H. y Hernández, C. (2023). Evaluation of fish density influence on the growth of the spotted rose snapper reared in floating net cages using growth models and non-parametric tests. Ciencias Marinas, (49): e3253. https://doi.org/10.7773/cm.y2023.3253

Katsanevakis S, y Maravelias, C.D. (2008). Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish and Fisheries 9(2):178–187. https://doi.org/10.1111/j.1467-2979.2008.00279.x

Kimura, D.K. (1980). Likelihood methods fos the von Bertalanffy growth curve. Fisheries Bulleting, 77:765-774.

Padilla-Cerezo, R., Castañeda – Rodríguez, P. y Ramírez-Orejel, J. (2022). Evaluación nutrimental de la dieta, calidad de la canal y carne de rana toro (Lithobates catesbeianus). Universidad Autónoma de Nuevo León. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos.

Ricker, W. E. (1975). Computation and interpretation of biological statistic of fish populations. Bulletin of the Fisheries Research Board of Canada. 191.

reservorio oligotrófico tropical poco profundo (Estanque IAG), São Paulo, sureste de Brasil. Acta Limnologica Brasiliensia, 18(2), 165-180.

Ostenfeld, C. H. y Nygaard, G. (1925). On the phytoplankton of the Gatun Lake, Panama Canal. Dansk Botanisk Arkiv, Udgivet of Dansk Botanish Forening, 4(10), 1-16.

Ramírez, J. J. (1986). Fitoplancton de red en el embalse El Peñol, Colombia. Actualidades Biológicas, 15(56), 2-13.

Ramírez, J. J. (2000). Fitoplancton de agua dulce: aspectos ecológicos, taxonómicos y sanitarios. Editorial Universidad de Antioquia.

Rengefors, K. y Kremp, A. (2018). The ecology of freshwater dinoflagellates. En Ø. Moestrup y A. J. Calado (Eds.), Süßwasserflora von Mitteleuropa, Bd. 6-Freshwater Flora of Central Europe. Springer Spektrum.

Schiller, J. (1937). Dinoflagellatae (Peridineae) in monographischer Behandlung. En L. Rabenhorst (Ed.), Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 2 Teil (pp. 1-589). Akademische.

Taylor, F. J., Hoppenrath, M. y Saldarriaga J. F. (2008). Dinoflagellate diversity and distribution. Biodiversity and Conservation, 17, 407-418. https://doi.org/10.1007/s10531-007-9258-3

Artículos similares

<< < 2 3 4 5 6 7 8 > >> 

También puede {advancedSearchLink} para este artículo.